

SINEAX VC604s Programmable Safety Value Converter

for direct currents, direct voltages, temperature sensors, teletransmitters or potentiometers

SINEAX VC604s is a multifunctional transmitter for top-hat rail assembly with the following main characteristics:

- Measurement of DC voltage, DC current, temperature (RTD, TC) and resistance
- Sensor connection without any external jumpers
- 2 inputs (e.g. for sensor redundancy or difference formation)
- 1 output (U or I)
- 2 inputs can be linked with each other and allocated to the 2 outputs which enables calculations and sensor monitoring (e.g. prognostic maintenance of sensors).
- System capability: Communication via Modbus interface
- 2 freely programmable relays with changeover contacts, e.g. for limit or alarm signalling
- AC/DC wide-range power supply unit
- Pluggable high-quality screw or spring cage terminals

All settings of the instrument can be adapted to the measuring task by PC software. The software also serves visualising, commissioning and service.

Table 1: Input variables, measuring ranges

Type of measurement	Measuring range	Minimum span
DC voltage [mV]	−1000 1000 mV	2 mV
DC voltage [V]	−300 300 V	>1 V
DC current [mA]	−50 50 mA	0.2 mA
Resistance $[\Omega]$	05000 Ω	8 Ω
RTD Pt100	−200 850 °C	20 K
RTD Ni100	−60 250 °C	15 K
TC Type B	0 1820 °C	635 K
TC Type E	−270 1000 °C	34 K
TC Type J	−210 1200 °C	39 K

Type of measurement	Measuring range	Minimum span
TC Type K	−270 1372 °C	50 K
TC Type L	−200 900 °C	38 K
TC Type N	−270 1300 °C	74 K
TC Type R	−50 1768 °C	259 K
TC Type S	−50 1768 °C	265 K
TC Type T	−270 400 °C	50 K
TC Type U	−200 600 °C	49 K
TC Type W5Re-W26Re	0 2315 °C	135 K
TC Type W3Re-W25Re	0 2315 °C	161 K

Programmable Safety Value Converter

Technical data

Measuring input 1 -

Direct voltage

For limits see table 1 Measuring range mV

 $Ri > 10 M\Omega$.

continuous overload max. ±1200 mV

Measuring range V (only in corresponding For limits see table1 $Ri = 1.4 M\Omega$.

continuous overload max. ±300 V

Direct current

device type)

Measuring range mA For limits see table 1

 $Ri = 11 \Omega$.

continuous overload max. ±50 mA

Resistance thermometer RTD

Resistance

Pt100 (IEC 60751). measurement types

adjustable Pt20...Pt1000 Ni100 (DIN 43760), adjustable Ni50...Ni1000

Measuring range limits See table 1

Wiring 2, 3 or 4-wire connection

0.2 mA Measuring current Line resistance 30Ω per line,

in 2-wire connection adjustable or

calibratable

Thermocouples TC

Thermocouples Type B, E, J, K, N, R, S, T

(IEC 60584-1)

Type L, U (DIN 43760) Type W5Re-W26Re, W3Re-W25Re (ASTM E988-90)

Measuring range limits See table 1

Cold junction

Internal (with installed Pt100). compensation

with Pt100 on terminals or with external reference junction

-20...70 °C

Resistance measurement, teletransmitter, potentiometer

Measuring range limits See table 1

Wiring 2, 3 or 4-wire connection Resistance teletransmitter Type WF and WF DIN

Measuring current 0.2 mA Line resistance 30Ω per line,

in 2-wire connection adjustable or

calibratable

Measuring input 2 —

Direct current

Measuring range mA Same as measuring input 1

Direct voltage

Measuring range mV Same as measuring input 1

Resistance thermometer RTD Same as measuring input 1 except:

2 or 3 wire connection Wiring

Thermocouples TC

Same as measuring input 1

Resistance measurement, teletransmitter, potentiometer

Same as measuring input 1 except:

Wiring 2 or 3 wire connection

Please note

The following device types are available:

a) VC604s with measuring input for 1x direct current [mA] and

1x high direct voltage [V]

The direct voltage [V] and direct current [mA] measuring methods can be allocated to Input 1 or Input 2 here.

b) VC604s with measuring input for 2x direct current [mA]

The different device types are firm and cannot be repro-

grammed!

The measuring inputs 1 and 2 are galvanically connected. If 2 input sensors or input variables are used, observe combination options in Table 3 and circuit instructions contained in the operating instructions!

Analog output (→

Direct current

± 20 mA. Output range

range may be freely set

Burden voltage max. 12 V Open circuit voltage < 18 V

Limit Adjustable, max. ±22 mA

Residual ripple <50 µA pp (after low pass 10 kHz)

Source resistance $>5 M\Omega$

Direct voltage

Output range + 10 V

range may be freely set

Load max. 20 mA Current limit Approx. 30 mA

Adjustable, max. ±11 V

Residual ripple <20 mV pp (after low pass 10 kHz)

Source resistance

Output settings

Limitation

Gain/offset trimming

Inversion

Relay contact outputs $\square \rightarrow$

Contact 1 pole, changeover contact

Switching capacity AC: 2 A / 250 V

DC: 2 A / 30 V

Bus/programming connection ←

Interface, protocol RS-485, Modbus RTU

Baudrate 9.6...115.2 kBaud, adjustable

Programmable Safety Value Converter

Transmission behaviour

Measured quantities for the outputs

Input 1Input 2

Input 1 + input 2
 Input 1 - input 2
 Input 2 - input 1

• Input 1 · input 2

 Minimum value, maximum value or mean value of input 1

and input 2

 Sensor redundancy Input 1 or input 2

Transmission functions Line

Linear, Absolute amount, scaling (gain/ offset), magnifier function

(zoom)

user-specific via basic value table (24 basic values per measured

variable)

Settling time: Adjustable 1...30 s

Limit values and monitoring

Number of limit values Measured variable for the limit values

4

Input 1Input 2

• Measured variable for outputs

Input 1 – input 2

(e.g. drift monitoring in case of 2 sensors)

• Input 2 – input 1

(e.g. drift monitoring in case of

2 sensors)

Functions Absolute value

Gradient dx/dt (e.g. temperature

gradient monitoring)

Time delay Adjustable 0...3600 s Signalling Relay contact, alarm LED,

status 1, status 3

Sensor breakage and short circuit monitoring of measuring input

Signalling Relay contact, alarm LED,

status 1

Output value in case of a fault

Signalling to alarm LED In case of a sensor error, the defec-

tive input (1 or 2) is signalled by the number of flashes of the alarm LED

(1x or 2x).

In case of a failure at both inputs: Alarm LED does not flash.

Other monitoring operations

Drift monitoring Monitoring of measured value

difference between 2 input sensors for a certain period of time (e.g. due to different sensor

response times).

If the limit value is exceeded for this time, an alarm is signalled.

(See limit values 1 and 2)

Sensor redundancy Measurement with 2 temperature

sensors; if sensor 1 fails (fault) sensor 2 is activated for bridging (see measuring quantities for

outputs)

Alarm signalling

Time delay Adjustable 0...60 s

Alarm LED "ERR "

Relay contact
With closed contact,
the yellow LED shines,
invertible alarmfunction

Output value

in case of a fault For sensor breakage and short cir-

cuit, value adjustable -10...110%

Power supply

Rated voltage UN	Tolerance
24230 V DC	±15%
100230 V AC, 50400 Hz	±15%

Consumption 2.0 W resp. 5.5 VA

Displays at the instrument

LED	Color	Function				
ON/ERR	green	Power on				
	red	Alarm				
	flashing	Communication active				
1 _/_	yellow	Relay 1 on				
2	yellow	Relay 2 on				

Configuration, programming

Operation via PC software «CB-Manager»

Accuracies (according to EN/IEC 60770-1)

Reference conditions

Ambient temperature $23 \, ^{\circ}\text{C} \pm 2 \, \text{K}$ Power supply $24 \, \text{V DC}$ Reference value Span

Settings Input 1: Direct voltage mV,

0...1000 mV

Output 1: 4...20 mA, burden

resistance 300 Ω Mains frequency 50 Hz, Setting time 1 s

Input 2, output 2, relay, monitoring off resp. not active, for voltage output: range 0...10 V, burden

resistance $>1~\text{M}\Omega$

Installation position Vertically, detached

Programmable Safety Value Converter

Basic accuracy

At reference conditions ±0.1%

Other types of measurement and input ranges: RTD Pt100, Ni100 $\pm 0.1\% \pm 0.2$ K Resistance measurement $\pm 0,1\% \pm 0.1$ Ω TC Type K, E, J, T, N, L, U $\pm 0.1\% \pm 0.4$ K,

measuring value > -100 °C

TC Type R, S $\pm 0.1\% \pm 2.4$ K TC Type B $\pm 0.1\% \pm 2.4$ K,

measuring value > 300°C

TC W5Re-W26Re,

 W3Re-W25Re
 ±0.1% ±2.0 K

 DC voltage mV
 ±0.1% ±0.015 mV

 DC voltage V
 ±0.1% ±0.0045 V

 DC current mA
 ±0.1% ±0.0015 mA

Additional error (additive)

High range minimum value (Minimum value >40%

of maximum value): $\pm 0.1\%$ of maximum value Small output range $\pm 0.1\%$ * (reference range / new

range)

Cold junction

compensation internal ±3 K

Magnifier function \pm Zoom factor x (basic accuracy +

additional error)

Zoom factor = measured variable

range / zoom range

Influencing factors

Ambient temperature ±0.1% per 10 K at reference con-

ditions

other settings: basic accuracy and

additional errors per 10 K

Long-term drift ±0.1%

Common mode influence ±0.01%

Ambient conditions

Operating temperature $-25 \dots +55 \,^{\circ}\text{C}$ Storage temperature $-40 \dots +70 \,^{\circ}\text{C}$

Relative humidity ≤75%, no condensation

Range of utilisation Internal room up to 2000 m above

sea level

Installation details

Design Top-hat rail housing U4

Flammability class V-0 according to UL 94

Dimensions See dimensional drawing

Assembly For snap-on fastening on top-hat

rail (35 x 15 mm or 35 x 7.5 mm)

according to EN 50022

Terminals Pluggable, 2.5 mm²

Front plug spring terminal 1.5 mm²

Weight 150

Product safety, regulations

Electromagnetic compatibility	EN 61000-6-2 / 61000-6-4
Ingress protection (acc. EN 60529)	Housing IP 40 terminal IP20
Electric design	Acc. EN 61010
Degree of pollution	2
Between power supply and all circuits and be- tween the measuring input (1 + 2) and all circuits	Reinforced insulation overvoltage category III Working voltage 300 V Test voltage 3.7 kV AC rms
Between output (1 + 2) and relay contact	Reinforced insulation overvoltage category II Working voltage 300 V Test voltage 2.3 kV AC rms
Between output (1 + 2) and the bus connection	Functional insulation Working voltage <50 V Test voltage 0.5 kV AC rms
Environmental tests	EN 60068-2-1/-2/-3 EN 60068-2-27 Shock: 50g, 11ms, sawtooth, half-sine EN 60068-2-6 Vibration: 0.15mm/2g, 10150Hz, 10 cycles

Electric connections

					Circu
	0	0	0	0	Meas
	AUFR 5	2 6 VC	3 7 60	4 8 4 5	Outp
	CAMILLE B	1	() (_KK _/_	Relay
		+	<u> </u>	GND	
	9 13	10 14	11 15 17	16	Powe
l	0	0	0	0	Bus/
	Ø	Ø	0	0	progi

•			
	Circuit	Terminal	Remarks
	Measuring input	1 to 8	See table 2
	Output	9 (+), 13 (–)	
	Relay contacts relay 1 relay 2	nc com no 10 11 12 14 15 16	In dead voltage condition nc and com are connected
	Power supply	17 (+/~) 18 (- /~)	Note polarity at DC
	Bus/ programming con- nection	+, -, GND	Front plug

Programmable Safety Value Converter

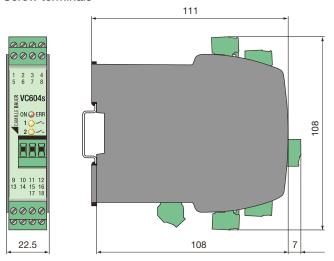
Table 2: Connection of inputs

Please note: If 2 input sensors or input variables are used, observe combination options in Table 3 and circuit instructions contained in the operating instructions!

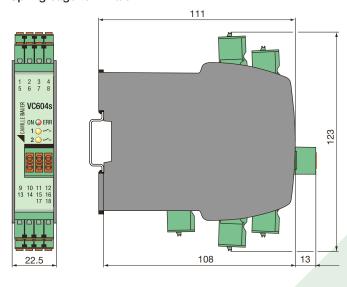
Type of massurament	Wiring			
Type of measurement	Input 1	Input 2		
	+ 30	<u>7</u>		
Direct voltage mV	U [mV]	8		
Thermocouple with external cold junction thermostat	+ 3	<u>7</u> O		
or internally compensated	- 4	8		
	10	2		
Thermocouple with Pt100 at the terminals at the same input	Pt100 + 3	<u>7</u>		
	- 4	<u>8</u> O		
	Pt100			
Thermocouple with Pt100 at the terminals at the other input	+ 3	<u>4</u> 0 <u>7</u> 0		
	- 4	8		
Resistance thermometer or	10	<u>2</u> O		
resistance measurement 2-wire	RTD, R	8		
Resistance thermometer	10	<u>2</u> O		
or resistance measurement 3-wire	RTD, R 3 0	<u>7</u> O		
Resistance thermometer or	1 0 0 RTD, R			
resistance measurement 4-wire	3			

Type of messurement	Wiring						
Type of measurement	Input 1	Input 2					
Decistores	Ra 0%	2					
Resistance- teletransmitter WF	Re 1 3	<u>7</u>					
	4						
	10	2					
Resistance- teletransmitter WF-DIN	Ra 0% 3	<u>7</u> O					
	Re 4	<u>8</u> O					
Direct voltage V (only in corresponding	+ 6 O						
device type)	40						
Direct current mA (Input 2 only in corresponding device	+ 5 I [mA]	6					
type)	- 40	<u> 4</u> 0					

Table 3: Measuring method combination options


	Input 2 measuring method	U [mV]	earthed	U [V] 1	I [mA] 1	TC ext.	earthed	TC int.	earthed		R 2L	R 3L	RTD 2L	RTD 3L	I [mA] 2
Input 1 measuring method	Terminals	7,	,8	6,4	5,4	7	,8	7,	,8	2,7,8	2,8	2,7,8	2,8	2,7,8	6,4
U [mV] earthed	3,4	1		1	1	1		1	√	1	1	1	1	1	1
U [V] 1	6,4	1			1	1		1		1	1	1	1	V	
I [mA]	5,4	1		1		1		1		1	1	V	1	1	1
TC ext.	3,4	1	√	1	1	1	√	1	√	1	1	1	1	1	1
TC int. earthed	3,4	1	√	1	1	1	√	1	√	1	1	1	1	1	1
	1,3,4	1				1				\	1	1	1	1	
R 2L	1,4	1				1				1	1	1	1	V	
R 3L	1,3,4	1				1				1	1	1	1	V	
R 4L	1,2,3,4	J				1									
RTD 2L	1,4	1				1				1	1	V	1	1	
RTD 3L	1,3,4	1				1				1	1	1	1	J	
WF	1,3,4	1				1				1	1	V	1	1	
WF_DIN	1,3,4	1				1				1	1	1	1	J	
RTD 4L	1,2,3,4	J				V									

- 1 Selectable only in device type 1x direct current [mA] and 1x high voltage [V]
- 2 Selectable only in device type 2x direct current [mA]


Programmable Safety Value Converter

Dimensional drawing

Screw terminals

Spring cage terminals

Ordering details

VC6	04s, Programmable	C604s
Fea	tures, Selection	
1.	Mechanical design	
	Top-hat rail housing	1
2.	Version	
	Standard with screw terminals	1
	Standard with spring cage terminals	2
3.	Climatic rating	
	Standard climatic rating	1
4.	Test certificate	
	without test certificate	0
	with test certificate German	D
	with test certificate English	Е
5.	Configuration	
	Version without high DC input in basic confi-	G
	guration Contrary to the version for high voltages,	
	mA signals can be processed at both inputs	
	simultaneously in this version. In addition, mV,	
	RTD, TC and resistance measurements are	
	possible.	
	Configured: Input 1: 420 mA / Input 2: 420 mA	
	Output 1: 420 mA / Output 2: 420 mA	
	Version for DC voltages up to 300V in basic	S
	configuration	
	DC voltages up to 300V DC can be measu-	
	red at one input. In addition, mV, RTD, TC and resistance measurements are possible at	
	both inputs. mA at one input.	
	Configured:	
	Input 1: 01000 mV DC / Input 2: not used	
	Output 1:420 mA / Output 2: not used	

Scope of supply

- 1 SINEAX VC604s
- 1 Safety Instructions 170 217
- 1 Software and Docu-CD 156027

Accessories

USB-RS485 converter (for programming the VC604s) Article No. 163189

Please note:

This are two hardware platforms.

A SINEAX VC604s with high DC Voltage cannot be configured to 2 x mA inputs afterwards, just as a SINEAX VC604s with 2 x mA cannot measure a high DC Voltage.

Rely on us.

Camille Bauer AG Aargauerstrasse 7 CH-5610 Wohlen / Switzerland

Phone: +41 56 618 21 11
Fax: +41 56 618 21 21
info@camillebauer.com
www.camillebauer.com