Device handbook SIRAX MM1200

Operating Instructions SIRAX MM1200

Camille Bauer Metrawatt AG Aargauerstrasse 7 CH-5610 Wohlen/Switzerland

Tel: +41 56 618 21 11 Fax: +41 56 618 21 21

info@cbmag.com www.camillebauer.com

Table of contents

1. Legal information	3
1.1 Safety and warning notices	3
1.2 Qualified personal	3
1.3 Intended use	3
1.4 Disclaimer of liability	3
1.5 Feedback	3
1.6 Repair work and modifications	3
1.7 Calibration and new adjustment	3
1.8 Cleaning	4
1.9 Disposal	4
1.10 Return	4
2. Introduction	4
2.1 Purpose of this document	4
2.2 Scope of supply	4
2.3 Further documents	4
3. Functional description	4
3.1 Available measurement data	5
3.2 Measurement Reading Screens	6
3.3 Parameter Screen	10
3.4 Setup Parameter Screen	11
4. Mechanical mounting	12
4.1 Panel cut out	12
4.2 Mounting of the device	12
4.3 Demounting of the device	12
5. Electrical connections	12
5.1 General safety notes	13
5.2 Possible cross sections and tightening torgues	13
5.3 Inputs	13
5.4 Power supply	14
5.5 Modbus interface BS485	14
	· · I T
6. Commissioning	14
6. Commissioning 7. Programming	14 15
6. Commissioning 7. Programming 7.1 Password Protection	14 15
6. Commissioning 7. Programming 7.1 Password Protection 7.1.1 Change Password	14 15 15 16
6. Commissioning 7. Programming 7.1 Password Protection 7.1.1 Change Password 7.2 Menu selection	14 15 15 16 16
6. Commissioning 7. Programming 7.1 Password Protection 7.1.1 Change Password 7.2 Menu selection 7.2.1 System Parameters Selection	14 15 15 16 16 16
6. Commissioning 7. Programming 7.1 Password Protection 7.1.1 Change Password 7.2 Menu selection 7.2.1 System Parameters Selection 7.2.2 Communication Parameter Selection.	14 15 15 16 16 16 20
6. Commissioning 7. Programming 7.1 Password Protection 7.1.1 Change Password 7.2 Menu selection 7.2.1 System Parameters Selection 7.2.2 Communication Parameter Selection 7.2.3 Reset Parameter Selection	14 15 15 16 16 16 20 21
6. Commissioning 7. Programming 7.1 Password Protection 7.1.1 Change Password 7.2 Menu selection 7.2.1 System Parameters Selection 7.2.2 Communication Parameter Selection. 7.2.3 Reset Parameter Selection 7.2.4 Output Option selection menu	14 15 15 16 16 16 20 21 21
6. Commissioning 7. Programming 7.1 Password Protection 7.1.1 Change Password 7.2 Menu selection 7.2.1 System Parameters Selection 7.2.2 Communication Parameter Selection 7.2.3 Reset Parameter Selection 7.2.4 Output Option selection menu 7.2.5 Brightness & Contrast	14 15 15 16 16 16 20 21 21 25
6. Commissioning 7. Programming 7.1 Password Protection 7.1.1 Change Password 7.2 Menu selection 7.2.1 System Parameters Selection 7.2.2 Communication Parameter Selection 7.2.3 Reset Parameter Selection 7.2.4 Output Option selection menu 7.2.5 Brightness & Contrast 7.2.6 RGB Color Code	14 15 15 16 16 20 21 21 25 25
6. Commissioning 7. Programming 7.1 Password Protection 7.1.1 Change Password 7.2 Menu selection 7.2.1 System Parameters Selection 7.2.2 Communication Parameter Selection 7.2.3 Reset Parameter Selection 7.2.4 Output Option selection menu 7.2.5 Brightness & Contrast 7.2.6 RGB Color Code 8. Touch screen calibration	14 15 16 16 16 20 21 21 25 25 25
6. Commissioning 7. Programming 7.1 Password Protection 7.1 Change Password 7.2 Menu selection 7.2 Menu selection 7.2.1 System Parameters Selection 7.2.2 Communication Parameter Selection 7.2.3 Reset Parameter Selection 7.2.4 Output Option selection menu 7.2.5 Brightness & Contrast 7.2.6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen	14 15 15 16 16 20 21 21 25 25 26 26
6. Commissioning 7. Programming 7. 1 Password Protection 7.1 1 Change Password 7.2 Menu selection 7.2 Menu selection 7.2.1 System Parameters Selection 7.2.2 Communication Parameter Selection. 7.2.3 Reset Parameter Selection 7.2.4 Output Option selection menu 7.2.5 Brightness & Contrast. 7.2.6 RGB Color Code. 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour	14 15 15 16 16 20 21 21 25 25 26 27
6. Commissioning 7. Programming 7.1 Password Protection 7.1.1 Change Password 7.2 Menu selection 7.2 Menu selection 7.2.1 System Parameters Selection 7.2.2 Communication Parameter Selection. 7.2.3 Reset Parameter Selection 7.2.4 Output Option selection menu 7.2.5 Brightness & Contrast. 7.2.6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour	14 15 15 16 16 20 21 25 25 26 27 27
6. Commissioning 7. Programming 7.1 Password Protection 7.1 1 Change Password 7.2 Menu selection 7.2 Menu selection 7.2 1 System Parameters Selection 7.2.1 System Parameters Selection 7.2.2 Communication Parameter Selection 7.2.3 Reset Parameter Selection 7.2.4 Output Option selection menu 7.2.5 Brightness & Contrast 7.2.6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 12. Number of Interruption	14 15 15 16 16 16 20 21 21 25 26 27 27 27
6. Commissioning 7. Programming 7.1 Password Protection 7.1.1 Change Password 7.2 Menu selection 7.2 Menu selection 7.2.1 System Parameters Selection 7.2.2 Communication Parameter Selection. 7.2.3 Reset Parameter Selection 7.2.4 Output Option selection menu 7.2.5 Brightness & Contrast. 7.2.6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 12. Number of Interruption 13. Analog Output	14 15 15 16 16 16 20 21 21 25 25 26 27 27 27 27
6. Commissioning 7. Programming 7. 1 Password Protection 7. 1 Password 7. 2 Menu selection 7. 2 Menu selection 7. 2. 1 System Parameters Selection 7. 2. 2 Communication Parameter Selection 7. 2. 3 Reset Parameter Selection 7. 2. 4 Output Option selection menu 7. 2. 5 Brightness & Contrast 7. 2. 6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 11. On Hour 12. Number of Interruption 13. Analog Output 14. Relay output	14 15 15 16 16 16 20 21 21 25 25 26 27 27 27 28 29
6. Commissioning 7. Programming 7. 1 Password Protection 7. 1 Password Protection 7. 2 Menu selection 7. 2 Menu selection 7. 2. 2 Communication Parameter Selection 7. 2. 2 Communication Parameter Selection 7. 2. 3 Reset Parameter Selection 7. 2. 4 Output Option selection menu 7. 2. 5 Brightness & Contrast 7. 2. 6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 11. On Hour 12. Number of Interruption 13. Analog Output 14. Relay output 14. 1 Pulse Output	14 15 15 16 16 16 20 21 25 25 25 26 27 27 27 27 27 29 29
6. Commissioning 7. Programming 7.1 Password Protection 7.1.1 Change Password 7.2 Menu selection 7.2.1 System Parameters Selection 7.2.2 Communication Parameter Selection. 7.2.3 Reset Parameter Selection 7.2.4 Output Option selection menu 7.2.5 Brightness & Contrast. 7.2.6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 11. On Hour 13. Analog Output 14. Relay output 14.1 Pulse Output 14.1 Pulse Output 14.1 Pulse Output 14.2 Limit Switch	14 15 15 16 16 16 20 21 21 25 25 25 26 27 27 27 27 27 29 30
6. Commissioning 7. Programming 7.1 Password Protection 7.1 Password Protection 7.2 Menu selection 7.2 Menu selection 7.2 Menu selection 7.2.2 Communication Parameter Selection 7.2.3 Reset Parameter Selection 7.2.4 Output Option selection menu 7.2.5 Brightness & Contrast 7.2.6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 11. On Hour 12. Number of Interruption 13. Analog Output 14. Relay output 14.1 Pulse Output 14.1 Pulse Output 14.1 Pulse Output 14.1 Pulse Output 14.1 Pulse Output	14 15 15 16 16 16 20 21 21 25 26 27 27 27 27 27 27 29 30 31
6. Commissioning 7. Programming 7. 1 Password Protection 7. 1 Password Protection 7. 1 Change Password 7. 2 Menu selection 7. 2 Menu selection 7. 2. 1 System Parameters Selection 7. 2. 2 Communication Parameter Selection 7. 2. 3 Reset Parameter Selection 7. 2. 4 Output Option selection menu 7. 2. 5 Brightness & Contrast 7. 2. 6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 11. On Hour 13. Analog Output 14. Relay output 14. 1 Pulse Output 14. 1 Pulse Output 14. 2 Limit Switch 15. Phaser Diagram 16. Technical data	14 15 15 16 16 16 20 21 21 25 25 26 27 27 27 27 29 29 30 31 31
6. Commissioning 7. Programming 7. 1 Password Protection 7. 1 Achange Password 7. 2 Menu selection 7. 2. 1 System Parameters Selection 7. 2. 1 System Parameter Selection 7. 2. 2 Communication Parameter Selection 7. 2. 3 Reset Parameter Selection 7. 2. 4 Output Option selection menu 7. 2. 5 Brightness & Contrast 7. 2. 6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 11. On Hour 12. Number of Interruption 13. Analog Output 14. 7 Pulse Output 14. 1 Pulse Output 14. 2 Limit Switch 15. Phaser Diagram 16. Technical data 16. 1 Dimensional drawings	14 15 15 16 16 16 20 21 25 25 26 27 27 27 27 27 29 29 29 30 31 33
6. Commissioning 7. Programming 7. 1 Password Protection 7. 1 Password Protection 7. 1 Change Password 7. 2 Menu selection 7. 2.1 System Parameter Selection 7. 2.2 Communication Parameter Selection 7. 2.3 Reset Parameter Selection menu 7. 2.4 Output Option selection menu 7. 2.5 Brightness & Contrast 7. 2.6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 11. On Hour 12. Number of Interruption 13. Analog Output 14. Relay output 14. Relay output 14. Puise Output 15. Phaser Diagram 16. Technical data 16. 1 Dimensional drawings 16. 2 Connection and programming via Ethernet RS485 (Modbus RTU) interface.	14 15 15 16 16 16 20 21 21 22 25 26 27 27 27 27 27 27 29 30 31 33 34
6. Commissioning 7. Programming 7. 1 Password Protection 7. 1. 1 Change Password 7. 2 Menu selection 7. 2 Menu selection 7. 2. 1 System Parameter Selection 7. 2. 2 Communication Parameter Selection 7. 2. 3 Reset Parameter Selection 7. 2. 4 Output Option selection menu 7. 2. 5 Brightness & Contrast 7. 2. 6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 11. On Hour 13. Analog Output 14. Pulse Output 14. Pulse Output 14. 2 Limit Switch 15. Phaser Diagram 16. Technical data 16. 1 Dimensional drawings 16. 2 Connection and programming via Ethernet RS485 (Modbus RTU) interface 16. 3 Connection and programming via Ethernet RJ45 (Modbus RTU) interface 16. 3 Connection and programming via Ethernet RJ45 (Modbus RTU) interface	14 15 15 16 16 20 21 21 25 25 26 27 27 27 27 27 27 29 30 31 33 34 34
6. Commissioning 7. Programming 7. 1 Password Protection 7. 1 Change Password 7. 2 Menu selection 7. 2 Menu selection 7. 2.1 System Parameters Selection 7. 2.2 Communication Parameter Selection 7. 2.3 Reset Parameter Selection 7. 2.4 Output Option selection menu 7. 2.5 Brightness & Contrast 7. 2.6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 11. On Hour 12. Number of Interruption 13. Analog Output 14. Relay output 14. Pluse Output 14. Pluse Output 14. Pluse Output 14. Pluse Output 14. Pluse Output 14. Dimensional drawings 16. Technical data 16. 1 Dimensional drawings 16. 2 Connection and programming via Ethernet RS485 (Modbus RTU) interface 16. 3 Connection and programming via Ethernet RS485 (Modbus RTU) interface 17. Interface Definition Modbus	14 15 15 16 16 20 21 21 25 26 27 27 27 27 27 27 29 30 31 31 33 34 34 34
6. Commissioning 7. Programming 7. 1 Password Protection 7. 1 Change Password 7. 2 Menu selection 7. 2 Menu selection 7. 2. 1 System Parameters Selection 7. 2. 2 Communication Parameter Selection 7. 2. 3 Kystem Parameter Selection 7. 2. 4 Output Option selection menu 7. 2. 5 Brightness & Contrast 7. 2. 6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 12. Number of Interruption 13. Analog Output 14. Relay output 14. 1 Pulse Output 14. 1 Pulse Output 15. Phaser Diagram 16. Technical data 16. 1 Dimensional drawings 16. 2 Connection and programming via Ethernet RS485 (Modbus RTU) interface 16. 3 Connection and programming via Ethernet RJ45 (Modbus RTU) interface 17. 1 Accessing 3 X register for reading measured values	14 14 15 15 16 16 16 20 21 21 25 25 25 26 27 27 27 27 29 29 30 31 31 31 34 34 34 34 35
6. Commissioning 7. Programming 7. 1 Password Protection 7. 1 Anage Password 7. 2 Menu selection 7. 2 Nenu selection 7. 2. 1 System Parameters Selection 7. 2. 1 System Parameter Selection 7. 2. 3 Reset Parameter Selection 7. 2. 4 Output Option selection menu 7. 2. 6 RGB Color Code 8. Touch screen calibration 9. Phase Rotation Error screen 10. Run Hour 11. On Hour 11. On Hour 12. Number of Interruption 13. Analog Output 14. Relay output 14. Pulse Output 14. Pulse Output 15. Phaser Diagram 16. Technical data 16. 1 Dimensional drawings 16. 2 Connection and programming via Ethernet RS485 (Modbus RTU) interface 16. 3 Connection and programming via Ethernet RS485 (Modbus RTU) interface 17. 1 Accessing 3 X register for reading measured values 17. 2 Accessing 4 X register for reading & Writing Settings	14 15 15 16 16 16 20 21 25 26 27 27 27 27 27 27 29 29 29 29 30 31 33 34 34 34 34 34

1. Legal information

1.1 Safety and warning notices

In this document safety and warning notices are used, which you have to observe to ensure personal safety and to prevent damage to property.

Unauthorized repair or alteration of the unit invalidates the warranty.

Please observe that the data on the type plate must be adhered to!

The national provisions have to be observed in the installation and material selection of electric lines!

1.2 Qualified personnel

The product described in this document may be handled by personnel only, which is qualified for the respective task. Qualified personnel have the training and experience to identify risks and potential hazards when working with the product. Qualified personnel are also able to understand and follow the given safety and warning notices.

1.3 Intended use

О Д

The product described in this document may be used only for the application specified. The maximum electrical supply data and ambient conditions specified in the technical data section must be adhered. For the perfect and safe operation of the device proper transport and storage as well as professional assembly, installation, handling and maintenance are required.

1.4 Disclaimer of liability

The content of this document has been reviewed to ensure correctness. Nevertheless it may contain errors or inconsistencies and we cannot guarantee completeness and correctness. This is especially true for different language versions of this document. This document is regularly reviewed and updated. Necessary corrections will be included in subsequent version and are available via our webpage www.camillebauer.com.

1.5 Feedback

If you detect errors in this document or if there is necessary information missing, please inform us via e-mail to: customer-support@camillebauer.com

1.6 Repair work and modifications

Repair work and modifications shall exclusively be carried out by the manufacturer. Do not open the housing of the device. In case of any tampering with the device, the guaranty claim shall lapse. We reserve the right of changing the product to improve it.

1.7 Calibration and new adjustment

Each device is adjusted and checked before delivery. The condition as supplied to the customer is measured and stored in electronic form. The uncertainty of measurement devices may be altered during normal operation if, for example, the specified ambient conditions are not met.

1.8 Cleaning

The display and the control buttons should be cleaned at regular intervals. Use a dry or slightly damp cloth.

Damage caused by cleaning agents

Detergents can not only affect the clarity of the display, but also cause damage to the device. Therefore, do not use detergents.

1.9 Disposal

Device may only be disposed in a professional manner!

The disposal of devices and components may only be realised in accordance with good professional practice observing the country-specifi c regulations. Incorrect disposal can cause environmental risks.

1.10 Return

All devices delivered to Camille Bauer Metrawatt AG shall be free of any hazardous contaminants (acids, lyes, solutions, etc.). Use original packaging or suitable transport packaging to return the device.

Damage by returning

Damages caused by improper returning, no warranties or guarantees can be given.

2. Introduction

2.1 Purpose of this document

This document describes the multifunctional measuring device SIRAX MM1200. It is intended to be used by Installers and commissioners, Service and maintenance personnel, as well Planner.

Scope

This handbook is valid for all versions of the SIRAX MM1200. Some of the functions described in this document are available only, if the necessary optional components are included in the device.

Required knowledge

A general knowledge in the field of electrical engineering is required. For assembly and installation of the device knowledge of applicable national safety regulations and installation standard is required.

2.2 Scope of supply

- Measurement device SIRAX MM1200
- Safety instructions (multiple languages)
- Connection set: 4 mounting clamps

2.3 Further documents

Folgende weitere Dokumente zum Gerät sind elektronisch via www.camillebauer.com verfügbar:

- Safety instructions SIRAX MM1200
- Operating Instructions SIRAX MM1200

3. Functional description

The universal measuring device SIRAX MM1200 is suited for fixed mounting and the measurement of Voltage, current, frequency, power, energy (active / reactive / apparent), power factor, phase angle, etc in low voltage switchgear. The units are designed for unbalanced load network forms of 3-phase mains with 3- or 4-wire.

In normal operation the user is presented with one of the measurement reading screens out of several screens. These screens from particular submenu may be scrolled through one at a time in incremental order by touching the " key" and in decremental order by touching " key" on that screen. Viewing of any individual parameter with large reading (eg. shown of Line to neutral Voltage L2 in sub menu 2 screen 13) is also possible by touching that particular parameter.

3.1 Available measurement data

Measured Parameters	Units	3P 3W	3P 4W
System Voltage	V	•	•
Voltage UL1-N / UL2-N / UL3-N	V	_	•
Voltage UL1-2 / UL2-3 / UL3-1	V	•	•
System Current	A	•	•
Current IL1 / IL2 / IL3	A	•	•
Neutral Current	A	_	•
Frequency	Hz	•	•
Active Power	kW	_	•
Reactive Power	kVAr	_	•
Apparent Power	kVA	-	•
Power Factor	-	-	•
Phase Angle	degree	-	•
Active Import Energy (8 Digit resolution)*	kWh	•	•
Active Export Energy (8 Digit resolution)*	kWh	•	•
Reactive Import Energy (8 Digit resolution)*	kVArh	•	•
Reactive Export Energy (8 Digit resolution)*	kVArh	•	•
Apparent Energy (8 Digit resolution)*	kVAh	•	•
Current Demand	A	•	•
Max Current Demand	A	•	•
Apparent Power Demand	kVA	•	•
Max Apparent Power Demand	kVA	•	•
Import Active Power Demand	kW	•	•
Export Active Power Demand	kW	•	•
Max Import Active Power Demand	kW	•	•
Max Export Active Power Demand	kW	•	•
Run Hour	hours	•	•
On Hour	hours	•	•
Number of Interruptions	counts	•	•
Phase Rotation Error	-	-	•
Phase Absent Indication	_	_	•
Voltage THD U1/U2/U3*	%	•	•
Current THD I1/I2/I3*	%	•	•
Min / Max System Voltage	V	-	•
Min / Max System Current	A	-	•
Phase Diagram (only 4 wire)	_	_	•
Voltage Waveform	_	•	•
Current Waveform	_	•	•
Waveform per phase		_	•

* THD Parameters are L-N in case of 3P 4W & L-L in case of 3P 3W

3.2 Measurement Reading Screens

SYSTEM PARAM	METERS
239.6	V
5.001	Α
3.592	KW
	(STEM 🗲

SUBMENU 1: SYSTEM

Screen 1: System Parameters (System Voltage, System Current, System Active Power)

Screen 4: Pictorial Representation of Phaser Diagram (For 4 wire only)

Screen 7: System Interruptions

Screen 10: System % THD

SYSTEM Max. \	ALUES
239.9	V
5.005	A
	YSTEM

Screen 2: System Max. Values (System Voltage, System Current)

SYSTEM RUN HOUR
000001.19
hrs
MAIN SYSTEM

Screen 5: System Run Hour

(
z

Screen 8: System Frequency

SYSTEM POWER		
0.000	kVAr	
0.000	kVA	
0.000	kW	

Screen 11: System Power

Screen 3: System Min. Values (System Voltage, System Current)

SYSTEM ON HOUR
000005.18
hrs

Screen 6: System ON Hour

SYSTEM PO	OWER FACTOR
1.	000
	SYSTEM

Screen 9: System Power Factor

PHASE SEQUENCE
L1-L2-L3
CONNECTIONS ARE CORRECT

Screen 12: Phase Sequence (4 wire only) Correct Phase Sequence

Phase Sequence Error

LINE-LINE VOLTAGE			
L12	415.1	V	
L23	414.9	V	
L31	415.2	V	
с м.		AGE	

Screen 14: Line-Line Voltage

VOL	TAGE	WAVE	FORM	1
				116.5 Vrms
$\overline{\mathbf{x}}$	$\times \times$	$\overline{\mathbf{x}}$	\sim	116.5 Vrms
XXX	XX	XXX	XX	116.5 Vrms
				49.94 Hz
62.25 V/Div	MAIN	VOL	TAGE	2.500 ms/Div

Screen 16: Pictorial representation of Voltage Waveform (Only accessed through voltage submenu list)

LINE CURRENT % THD			
IL1	0.000	%	
IL2	0.000	%	
IL3	0.000	%	
(- M/			

Screen 19: Line Current %THD

LINE-NEUTRAL VOLTAGE		
L1	239.5	V
L2	239.6	V
L3	239.3	V
(M/		AGE

SUBMENU 2: VOLTAGE Screen 13: Line-Neutral Voltage (For 4 wire only)

PHASE VOLTAGE % THD		
L1	0.000	%
L2	0.000	%
L3	0.000	%
(M/		AGE

Screen 15: Phase Voltage THD (In case of 4 wire)

LINE CURRENT			
IL1	0.000	Α	
IL2	0.000	Α	
IL3	0.000	Α	
(M			

SUBMENU 3: CURRENT Screen 17 : Line Current

CUR	RENT	WAVE	FOR	М
XX	XX	202	XX	42.43 Arms 42.43 Arms 42.43 Arms 49.94 Hz
30.00 A/Div	MAIN	CURI	RENT	2.500 ms/Div

Screen 20: Pictorial representation of Current Waveform (Only accessed through current submenu list)

Phase L2 Line-Neutral Voltage (Displayed after touching any where in the L2 row shown in screen 13)

LINE VOLTAGE THD		
L12	0.000	%
L23	0.000	%
L31	0.000	%

Screen 15: Line Voltage THD (In case of 3 wire)

NEUTRAL CURRENT		
In	0.000	Α
	0.000	

Screen 18: Neutral Current (For 4 wire only)

L1 PHASE POWER		
0.000	kVAr	
0.000	kVA	
0.000	kW	
	POWER	

SUBMENU 4: POWER Screen 21: L1 Phase Power Reactive/ Apparent/Active (For 4 wire only)

L2 PHASE POWER	
0.000	kVAr
0.000	kVA
0.000	kW
	OWER

Screen 22: L2 Phase Power Reactive/Apparent/Active (For 4 wire only)

POWE	R FACTOR	२
L1	1.000	
L2	1.000	
L3	1.000	
		VER

Screen 25: Power Factor (Phase L1/L2/L3) (for 4W only)

IMPORT	ACTIVE D	EMAND
Demand	0.000	kW
Max Demand	0.000	kW

Screen 28: Import Active Demand

L2 P	HASE	WA\	/EFC	DRI	N
					210.4 DEG
				X	49.94 Hz
V		ZN	X	A	116.5 V
					42.43 A
62.25 V/Div	MAIN	P	OWE	R	2.500 ms/Div

Screen 31: Pictorial representation L2 Phase Waveform (For 4 wire only) (only accessed through power submenu list)

L3 PHASE POWER		
0.000	kVAr	
0.000	kVA	
0.000	kW	

Screen 23: L3 Phase Power Reactive/Apparent/Active (For 4 wire only)

		-
Demand	0.000	Α
Max Demand	0.000	Α

Screen 26: Current Demand

Demand	0.000	kW
Max Demand	0.000	kW

Screen 29: Export Active Demand

L3 PHASE WA	VEFORM
	49.94 Hz
	116.5 V
62.25 V/Div MAIN	POWER 2.500

Screen 32: Pictorial representation L3 Phase Waveform (For 4 wire only) (only accessed through power submenu list)

L1 0.000 DE L2 0.000 DE	PHASE		
L2 0.000 DE	L1	0.000	DEG
	L2	0.000	DEG
L3 0.000 DE	L3	0.000	DEG

Screen 24: Phase Angle (Phase L1/L2/L3) (for 4W only)

VA DE	MAND	
Demand	0.000	kVA
Max Demand	0.000	kVA

Screen 27: VA Demand

	м
	240.4
	DEG
	49.94 Hz
\vee /	116.5 V
	42.43 A
62.25 V/Div MAIN POWER	2.500 ms/Div

Screen 30: Pictorial representation of L1 Phase Waveform (For 4 wire only) (only accessed through power submenu list)

SUBMENU 5: ENERGY Screen 33: Active Energy Import

Screen 34: Active Energy Export

Screen 37: Apparent Energy

Screen 35: Reactive Energy Import

Screen 38: Ampere Hour

REACTIVE ENERGY EXPORT	
0.0000000	
kVArh	

Screen 36: Reactive Energy Export

3.4 Setup Parameter Screen

4. Mechanical mounting

The SIRAX MM1200 is designed for panel mounting.

Please ensure that the operating temperature limits are not exceeded when determining the place of mounting: -10 ... +55° C

4.1 Panel cut out

Dimensional drawing MM1200: See section 16.1

4.2 Mounting of the device

The device is suitable for panel widths up to 5mm and a panel cutout of 96 x 96 mm.

Variant with Mounting clamps

- a) Slide the device into the cutout from the outside
- b) Mounting is by four side clamps, slide the side clamps through side slot till side clamp gets firmly locked in a groove (Refer fig.) Consideration should be given to the space required behind the instrument to allow for bends in the connection cables.

4.3 Demounting of the device

The demounting of the device may be performed only if all connected wires are out of service. Remove all plug-in terminals and all connections of the current and voltage inputs. Pay attention to the fact, that current transformers must be shortened before removing the current connections to the device. Then demount the device in the opposite order of mounting (4.2).

5. Electrical connections

Ensure under all circumstances that the leads are free of potential when connecting them!

5.1 General safety notes

Please observe that the data on the type plate must be adhered to! The national provisions have to be observed in the installation and material selection of electric lines!

Symbol	Meaning
X	Device may only be disposed of in a professional manner!
	Double insulation, device of protection class 2
CAT III	Measurement category CAT III for current / voltage inputs, power supply and relay outputs
CE	CE conformity mark. The device fulfills the requirements of the applicable EC directives. See declaration of conformity.
\wedge	Caution! General hazard point. Read the operating instructions.
A	Attention: Danger to life!
	Please note

5.2 Possible cross sections and tightening torques

Inputs L1(2), L2(5), L3(8), N(11), I1(1-3), I2(4-6), I3(7-9), power supply (13-14), RS485 connector (A/B/G)

Single wire: 1 x 0,5 \ldots 4,0mm² oder 2 x 0,5 \ldots 2,5mm² Multiwire with end splices: 1 x 0,5 \ldots 4,0mm² oder 2 x 0,5 \ldots 2,5mm²

Tightening torque

0,5 ... 0,6 Nm resp. 4,42 ... 5,31 lbf in

5.3 Inputs

All voltage measurement inputs must originate at circuit breakers or fuses rated by 1 Amps. This does not apply to the neutral connector. You have to provide a method for manually removing power from the device, such as a clearly labeled circuit breaker or a fused disconnect switch.

When using voltage transformers you have to ensure that their secondary connections never will be short-circuited.

No fuse may be connected upstream of the current measurement inputs!

When using **current transformers** their secondary connectors must be short-circuited during installation and before removing the device. Never open the secondary circuit under load.

The connection of the inputs depends on the configured system (connection type).

Three Phase - three wire system, unbalanced load

Three Phase - four wire system, unbalanced load

5.4 Power supply

A marked and easily accessible current limiting switch has to be arranged in the vicinity of the device for turning off the power supply. Fusing should be 10 Amps or less and must be rated for the available voltage and fault current.

5.5 Modbus interface RS485

Via the optional Modbus interface measurement data may be provided for a superior system.

The signal wires (A, B) have to be twisted. GND (G) can be connected via a wire or via the cable screen. In disturbed environments shielded cables must be used. Supply resistors (Rs) have to be present in bus master (PC) interface. Stubs should be avoided when connecting the devices. A pure daisy chain network is ideal.

You may connect up to 32 Modbus devices to the bus. A proper operation requires that all devices connected to the bus have equal communication settings (baud rate, transmission format) and unique Modbus addresses.

The bus system is operated half duplex and may be extended to a maximum length of 1200 m without repeater.

6. Commissioning

Before commissioning you have to check if the connection data of the device match the data of the plant. If so, you can start to put the device into operation by switching on the power supply and the measurement inputs.

SIRAX MM1200				
ORDER CODE: 175019				
SR No.: 15/11/0001				
CLASS: 0.5 CAT III	300V Max. V18.10			
INPUT: 3PH. 440 V L - L, 5A/1A, 4566Hz				
OPTION:				
AUXILIARY: 100250V AC/DC, 4.5VA				

Label version standard

SIRAX MM1200				
ORDER CODE: 175051				
SR No.: 15/11/0001				
CLASS: 0.5 CAT III 300V Max. V18.10				
INPUT: 3PH. 440 V L - L, 5A/1A, 4566Hz				
OPTION: RS485 + 1PULSE + 2x420mA ANA.O/P				
AUXILIARY: 100250V AC/DC, 4.5VA				

Label version with RS485

7. Programming

The following sections comprise step by step procedures for configuring the instrument for individual user requirements. To access the set-up screens touch on the "I icon in Main Menu. This will take the User into the Password Protection Entry Stage (Section 7.1).

7.1. Password Protection

Password protection can be enabled to prevent unauthorised access to set-up screens, by default password is "0000". Password protection is enabled by selecting any four digit number.

After touching "SETUP" icon Password protection screen is displayed. Screen consists of 0 to 9 digit input keypad for entering the password very similar to any calculator in touchscreen mobile. "Enter Password" is displayed on screen at start so that user can enter password using displayed keypad.

Password Incorrect.

If Entered password is wrong then "Password Rejected" is displayed on screen & user need to re-enter the password

SETUP				
1				
1	2	3	DEL	
4	5	6	ENTED	
7	8	9	LNILK	
()	BA	ACK	

Touching "¹ key" will display 1 in display area, similarly user can enter remaining 3 digits. For deleting any digit while entering password, user can touch DEL" DEL key".

After wrong password is entered, user needs

to touch " ENTER key" for trying another password.

SETUP PASSWORD ACCEPTED 1 2 3 DEL 4 5 6 ENTER 7 8 9 0 BACK

Password confirmed.

If Entered password is correct then "Password Accepted" is displayed on screen & user will enter into setup menu.

7.1.1. Change Password

PASSWORD ENTER NEW PASSWORD 1 2 3 DEL 4 5 6

9 BACK

ENTER

Change Password Option is the second last option in list of "SETUP" submenu, so can be accessed by a simple touch anywhere in "Change Password" row.

In this screen user first needs to enter the current password.

After input of correct password, "PASSWORD ACCEPTED" is displayed & now user can enter the new 4 digit password.

PASSWORD					
PASSWORD CHANGED					
1 2	3 DEL				
4 5	6				
7 8	9				
0	BACK				

New Password confirmed.

After entering new password user needs to touch " confirm.

key" to

After confirming "PASSWORD CHANGED" is displayed on screen, which ensures successful changing of the password.

7.2. Menu selection

After entering in the SUBMENU 6 - SETUP, user will be asked to enter password & after input of correct password list of following parameters will be displayed on screen.

7.2.1 SYSTEM PARAMETERS7.2.2 COMMUNICATION PARAMETERS7.2.3 RESET PARAMETERS7.2.4 OUTPUT OPTIONS7.2.5 BRIGHTNESS & CONTRAST

Touching on SYSTEM PARAMETER will open the system parameters list screen. Then these screens from particular parameter may be scrolled through one at a time in incremental order by touching the " key" and in decremental order by touching " key" on given touch screen.

7.2.1 System Parameters Selection

After entering in the "SYSTEM PARAMETERS", List of following parameters will be displayed.

7.2.1.1 SYSTEM TYPE 7.2.1.2 PT PRIMARY(L-L) 7.2.1.3 PT SECONDARY(L-L) 7.2.1.4 CT PRIMARY 7.2.1.5 CT SECONDARY 7.2.1.6 DEMAND INTEGRATION TIME7.2.1.7 AUTO SCROLL7.2.1.8 LOW CURRENT NOISE CUTOFF7.2.1.9 ENERGY ON RS4857.2.1.10 ENERGY DIGIT RESET COUNT

7.2.1.1. System Type

7.2.1.2. Potential Transformer Primary Value

The nominal full scale voltage will be displayed as Line to Line Voltages for all system types.

to NONE.

PT PRIMARY					
ENTER PT PRIMARY VALUE(L-L)					
1	2	3	DEL		
4	5	6	ENTED		
7	8	9	ENIER		
	0	K	BACK		

This screen can be accessed only from system parameters list menu. Here again 0 to 9 digit input keypad is provided to set value of PT Primary, & user can confirm this value with a simple

Two types: 3 phase 3 wire & 3 phase 4 wire system are displayed on screen. Touching radio

Touching the "BACK key" will keep the old selected setting and will return to previous menu.

Note: If system type is changed, relay parameter selection & analog output selection will be set

This screen is used to set the system type.

button in front of particular type will select that type. Touch on " key" will confirm the system type.

In case presently displayed Potential Transformer Primary value together with the Current Transformer Primary value, previously set, would result in a maximum power of greater than 666.6 MVA per phase,"Invalid value" will be displayed. Then the valid range will be displayed.

	PT PRII	MARY			
INVALID VALUE					
1	2	3	DEL		
4	5	6	ENTED		
7	8	9	ENTER		
	0	K	BACK		

Valid range of PT primary setting value is from **100 VL-L to 692.8 KVL-L.**

If value outside the range is entered, It will display "INVALID VALUE" followed by correct range of parameter.

7.2.1.3 Potential Transformer secondary Value

The value must be set to the nominal full scale secondary voltage which will be obtained from the the Transformer when the potential transformer(PT)primary is supplied with the voltage defined in 7.2.1.2 potential transformer primary voltage. The ratio of full scale primary to full scale secondary is defined as the transformer ratio.

This screen can be accessed only from system parameters list menu. Here again 0 to 9 digit input keypad is provided to set value of PT Secondary, & user can confirm this value with a simple touch on " REVER key".

Valid range of PT secondary setting value is from 241.0 to 480.0. for 415 VL-L. Please refer the table bellow for different ranges.

If value outside the range is entered, It will display "INVALID VALUE" followed by correct range of parameter.

Potential Transformer secondary ranges for various Input Voltages

110V L-L (63.5V L-N)	100 - 120V L-L (57.73V - 69.28V L-N)
230V L-L (133.0V L-N)	121 - 240V L-L (69.86V - 138.56V L-N)
415V L-L (239.6V L-N)	241 - 480V L-L (139.14V - 277.12V L-N)

7.2.1.4 Current Transformer Primary Value

The nominal Full Scale Current that will be displayed as the Line currents. This screen enables the user to display the Line currents inclusive of any transformer ratios, the values displayed represent the Current in Amps.

		MARY	
ENTER C	T PRIMA	ARY VAL	UE
1	2	3	DEL
4	5	6	
7	8	9	ENTER
	0	K	BACK

This screen can be accessed only from system parameters list menu.

Here again 0 to 9 digit input keypad is provided to set value of CT Primary & user can confirm this

value with a simple touch on "ENTER key". "Key" is used to multiply value by 1000.

In case presently displayed Current Transformer Primary Value together with the Potential Transformer Primary Value results in a maximum power of greater than 666.6 MVA, "invalid value" will be displayed. Example: If primary value of PT is set as 692.8kV L-L (max value) then primary value of Current is restricted to 1157A.

The "Maximum Power" restriction of 666.6 MVA refers to 120% of nominal current and 120% of nominal voltage, i.e, 462.96 MVA nominal power per phase.

Valid range of CT primary setting value is from 1 to 9999. If value outside the range is entered, It will display "INVALID VALUE" followed by correct range of parameter.

This screen is used to set the secondary value for Current Transformer. Two options: 1 AMPERE & 5 AMPERE are displayed on screen. Touching radio button in front of particular option will select that option. Touch on "OK key" will confirm the setting. Touching the "BACK key" will keep the old

	EL
4 5 6	ITED
7 8 9	HER
0 K B/	ACK

7.2.1.5 Current Transformer Secondary Value

7.2.1.6 Demand Integration Time

OK BACK

This screen is used to set the period over which current and power readings are to be integrated.

Four options: 8, 15, 20, 30 Minutes are displayed on screen. Touching radio button in front of particular option will select that option.

Touch on "••• key" will confirm the setting.

selected setting and will return to previous menu.

Touching the "BACK key" will keep the old selected setting and will return to previous menu.

7.2.1.7 Auto Scrolling

GROLL			
OSYSTEM			
OCURRENT			
OENERGY			
⊚ NONE			
BACK			

7.2.1.8 Low Current noise cutoff.

This screen allows the user to set Low noise current cutoff in mA.

7.2.1.9 Energy on RS485.

This screen enable user to set energy in terms of Wh / kWh / MWh on Rs485 Output depending as per the user's requirement . This setting is applicable for all types of energy.

Three options: WATT, KILO-WATT & MEGA-WATT are displayed on screen. Touching radio button in front of particular option will select that option.

Touch on "••• key" will confirm the setting.

Touching the "BACK key" will keep the old selected setting and will return to previous menu.

Note: Default value is set to 'WATT' i.e. Energy on Modbus will be in terms of Wh/VArh/ VAh/Ah respectively.

7.2.1.10 Energy Digit Reset Count (Rollover Count)

This screen enables the user for setting maximum energy count after which energy will rollover to zero depending on the setting of Wh, kWh & Mwh in Energy on RS485 option.

... the 11 digit count.

ENERGY DIGIT	RESET COUNT
Ø 7 DIGITS	O 8 DIGITS
O 9 DIGITS	O 10 DIGITS
O 11 DIGITS	O 12 DIGITS
O 13 DIGITS	O 14 DIGITS
ок	ВАСК

If Energy on RS485 is in WATT then rollover count can be from 7 to 14 DIGITS. If Energy on RS485 is in KILO-WATT then rollover count can be from 7 to 12 DIGITS. If Energy on RS485 is in MEGA-WATT then rollover count can be from 7 to 9 DIGITS. Touching radio button in front of particular option will select that option. Touch on "OK key" will confirm the setting. Touching the "EACK key" will keep the old selected setting and will return to previous menu. Note: 1) Default value of energy digit reset count is set to "14" i.e if energy crosses the 14 digit count it will rollover to zero. 2) If Energy on RS485 is set to kW & energy digit reset count is set to 12, Energy ... screen on display will show "------" i.e energy overflow when energy crosses

3) If Energy on RS485 is set to MW & energy digit reset count is set to 9, Energy screen on display will show "------" i.e energy overflow when energy crosses the 8 digit count.

This screen allows user to enable screen scrolling. Seven options : ALL, SYSTEM, VOLTAGE, CURRENT POWER, ENERGY & NONE are displayed on screen. Touching radio button in front of particular option will select that option. Selecting particular option means, only screens which are under that submenu will be scrolled automatically. Selecting NONE will disable Auto-Scroll.

Touch on " key" will confirm the setting.

in front of particular option will select that option.

Touch on "even key" will confirm the setting.

Touching the "BACK key" will keep the old selected setting and will return to previous menu.

While in Auto-scrolling mode, touch sense for entire screen will be disabled except for the top right most corner where "A" symbol would be displayed stating that meter is in Auto-scroll mode. Touching on "A" will show two options "ON" and "OFF". Touching on "ON" will continue auto scrolling & touching on "OFF" will stop auto-scrolling & return to normal mode.

Two options, 0 MILLI-AMPERE & 30 MILLI-AMPERE are displayed on screen. Touching radio button

Touching the "BACK key" will keep the old selected setting and will return to previous menu.

7.2.2 Communication Parameter Selection

After entering in the "COMMUNICATION PARAMETERS" list of following parameters will be displayed

parameter.

7.2.2.1 RS485 ADDRESS 7.2.2.2 Rs485 BAUD RATE 7.2.2.3 Rs485 PARITY

7.2.2.1 RS485 Address Setting

RS485 ADDRESS ENTER RS485 ADDRESS 1 2 3 DEL 4 5 6 ENTER 7 8 9 ENTER 0 BACK

This screen applies to the RS 485 output only. This screen allows the user to set RS485 address parameter for the instrument.

This screen can be accessed only from Communication Parameters List menu.

Here again 0 to 9 digit input keypad is provided to set RS485 address & user can confirm this value with a simple touch on "

If value outside the range is entered, it will display "INVALID VALUE" followed by the correct range of

RS485 ADDRESS INVALID VALUE 1 2 3 DEL 4 5 6 ENTER 7 8 9 0 BACK

7.2.2.2 RS 485 Baud Rate

This screen allows the user to set Baud Rate of RS 485 port.

Four options: 2400, 4800, 9600, 19200 Bauds are displayed on screen. Touching radio button in front of particular option will select that option.

Touch on "••• key" will confirm the setting.

The range of allowable address is 1 to 247.

Touching the "BACK key" will keep the old selected setting and will Return to previous menu.

7.2.2.3 RS 485 Parity & Stop bit Selection

This screen allows the user to set Parity & number of stop bits. Four options: ODD PARITY WITH ONE STOP BIT, NO PARITY WITH ONE STOP BIT, NO PARITY WITH TWO STOP BITS, EVEN PARITY WITH ONE STOP BIT are displayed on screen. Touching radio buttion in front of particular option will select that option.

Touch on "ok key" will confirm the setting.

Touching the " or key" will keep the old selected setting and will return to previous menu.

7.2.3 Reset Parameter Selection 7.2.3.1 Resetting Parameter

These screens allow the users to reset all the parameters eg:- Energy, Min, Max, Demand, Run hour, On hour, No. of Interrupts. Touching " down" key scrolls list in upward direction.

This screen is displayed after repeatedly touching " down" key. Touching " Up" key scrolls list in downward direction.

For resetting specific parameter user can touch on that parameter.

Touching on any parameter will display the confirmation dialog, now a touch on "YES key" will confirm the resetting of that particular Parameter.

Touching on " Not key" will move back to Reset parameters menu

For example resetting All Energies will display a confirmation dialog as shown in the screen beside. User can reset other parameters in similar manner.

7.2.4. Output Option selection menu

After entering in the "OUTPUT OPTIONS", List of following parameters will be displayed :-

7.2.4.1 RELAY-1 7.2.4.2 ANALOG-1 7.2.4.3 ANALOG-2

7.2.4.1. Relay1 output Selection menu

This screen applies to the Relay1 Output option Selection. Two options: PULSE OUTPUT & LIMIT OUTPUT displayed on screen. Touching any option will open screens of parameters related to that option.

Touch on " OUTPUT OPTIONS key" will take back to Output Options screen.

7.2.4.1.1. Pulse output

After entering in the "PULSE OUTPUT", List of following parameters will be displayed :-7.2.4.1.1.1 ENERGY 7.2.4.1.1.2 PULSE DURATION 7.2.4.1.1.3 PULSE RATE These settings are used to assign Relay1 in Pulse output mode.

7.2.4.1.1.1 Assignment of Energy to pulse output (Relay 1)

This screen allows the user to assign energy to pulse output (for Relay 1)

Following six options are displayed:-Apparent EnergyImport Energy (Active)Export Energy (Active)Import Energy (Reactive)Export Energy (Reactive)Ampere Hour

Touching radio button in front of any particular option will select that option. Touch on " key" will confirm the setting.

Touching the "BACK key" will keep the old selected setting and will return to previous menu.

This screen allows the user to set Relay energisation time in milliseconds. Three options: 60, 100, 200 ms are displayed on screen. Touching radio button in front of particular option will select that

Touching the "BACK key" will keep the old selected setting and will return to previous menu.

7.2.4.1.1.2 Pulse Duration Selection

This screen applies only to the Pulsed output mode of both the relays.

option.

Touch on "**w** key" will confirm the setting.

7.2.4.1.1.3 Pulse Rate

This screen applies only to the Pulsed output mode of both the relays.

The screen allows user to set the energy pulse rate divisor. Divisor values can be selected through 1,10, 100,1000. Touching radio button in front of particular value will select that value. Touch on " • key" will confirm the setting.

Touching the " **BACK** key" will keep the old selected setting and will return to previous menu. Pulse rate divisor is set to 1, when Energy on Rs485 is set to kWh or MWh.

7.2.4.1.2 Limit output

This screen is for Limit output mode selection. It allows the user to set Limit output corresponding measured value. After entering in Limit Output first time(was disabled previously), only "PARAMETER:" is displayed on screen. Now a simple touch on "PARAMETER:" will open list of parameters, Refer Table 2 "Parameter for Analog & Limit output" for assignment.

Now after assignment of any parameter, list of following setting parameters will be displayed:

7.2.4.1.2.1 PARAMETER 7.2.4.1.2.2 CONFIG 7.2.4.1.2.3 TRIP POINT 7.2.4.1.2.4 HYSTERESIS POINT 7.2.4.1.2.5 ENERGIZING DELAY 7.2.4.1.2.6 DE-ENERGIZING DELAY

7.2.4.1.2.1 Limit Parameter selection

This option allows the user to set Relay\-1 limit to corresponding measured parameter. A simple touch on "PARAMETER" row will open screen having list of parameters. (Refer Table 2 "Parameters for Analog & limit output")

Touch on "••• key" will confirm the setting.

Touching the "BACK will keep the old selected setting and will return to previous menu.

7.2.4.1.1.2.2. Limit1 Configuration select

This screen is used to set the Limit1 Configuration, four different types of configuration can be selected.

7.2.4.1.2.3 Trip point selection

This screen applies to the Trip point selection.

RELAY-1 TRIP POINT				
ENTER	R TRIP F	POINT	IN %	
1	2	3 DEL		
4	5	6	ENITED	
7	8	9	ENTER	
(BA	CK	

REL	AY-1 T	RIP P	OINT	
INVALID VALUE				
1	2	3	DEL	
4	5	6		
7	8	9	ENTER	
(0		ACK	

7.2.4.1.2.4 Hysteresis selection

This screen applies to the Hysteresis selection.

RELA	Y-1 H	(STEI	RESIS
SET H	/STERE	ESIS IN	1%
1	2	3	DEL
4	5	6	
7	8	9	ENTER
	0	K	BACK

HIGH ALARM & ENERGIZED RELAY HIGH ALARM & DE-ENERGIZED RELAY LOW ALARM & ENERGIZED RELAY LOW ALARM & DE-ENERGIZED RELAY (For detail refer to section 9.2)

Touching radio button in front of particular type will select that type. Touch on "or key" will confirm the setting. Touching the "BACK key" will keep the old selected setting and will return to previous menu.

This screen allows the user to set Trip point for instrument in %. This screen can be accessed only from Limit Output settings list menu. Here a 0 to 9 digit input keypad is provided to set value of Trip

kev."

Point, & user can confirm this value with a simple touch on "

The allowable range is from 10% to 120% for High Alarm & is from 10% to 100% for Low Alarm.

If value outside this range is entered, it will display "INVALID VALUE" followed by correct range of parameter.

This screen allows the user to set Hysteresis in % for relay1. This screen can be accessed only from Limit Output settings list menu. Here a 0 to 9 digit input keypad is provided to set value of Hysteresis,

& user can confirm this value with a simple touch on " $\hfill {\hfill \mbox{\tiny ENTER}}$ key".

"BACK key" is used to go back to Limit Output list menu.

REL	AY-1 H	YSTE	RESIS
INVAL	ID VAL	JE	
1	2	3	DEL
4	5	6	ENTED
7	8	9	ENTER
•	0	K	BACK

7.2.4.1.2.5 Energizing Delay time

This screen allows the user to set Energizing Delay time for Relay 1 Limit Assigned Parameters.

parameter.

RELAY-1 ENER	GIZING DELAY	
ENTER ENERGIZIN	G DELAY IN SEC	
1 2	3 DEL	
4 5	6 ENTER	
7 8	9	
0	BACK	
		ī
RELAY-1 ENER	GIZING DELAY	
VALID RANGE	S : 1 - 10 Secs	
1 2	3 DEL	
4 5	6 ENTER	
7 8	9	
0	BACK	

This screen can be accessed only from Limit Output settings list menu. Here a 0 to 9 digit input keypad is provided to set value of Delay, & user can confirm this value with a simple touch on " key."

If value outside this range is entered, it will display "INVALID VALUE" followed by correct range of

" key" is used to go back to Limit Output list menu.

The allowable range is 0.5% to 50 % of Trip point.

The allowable range is from 1 to 10 sec. If value outside this range is entered, it will display "INVALID VALUE" followed by correct range of parameter.

7.2.4.1.2.6. De-Energizing Delay time

This screen allows the user to set De-Energizing Delay time for Relay 1 Limit Assigned Parameters.

This screen can be accessed only from Limit Output settings list menu. Here a 0 to 9 digit input keypad is provided to set value of Delay, & user can confirm this value with a

simple touch on " ENTER key."

BACK key" is used to go back to Limit Output list menu.

The allowable range is from 1 to 10 sec. If value outside this range is entered, It will display "INVALID VALUE" followed by correct range of parameter.

7.2.4.2 Parameter setting for Analog Output 1 (Optional)

This option allows the user to set analog output 1 to corresponding measured parameter. A simple touch on "ANALOG-1"row will open screen having list of parameters.(Refer table2 " Parameter for Analog & Limit output ") Touch on " key" will confirm the setting. Touching the " key" will keep the old selected setting and will return to previous menu.

7.2.4.3 Parameter setting for Analog Output 2 (Optional)

This option allows the user to set analog output 2 to corresponding measured parameter. A simple touch on "ANALOG-2" row will open screen having list of parameters. (Refer table2 " Parameter for Analog & Limit output ")

Touch on " key" will confirm the setting.

Touching the "_____key" will keep the old selected setting and will return to previous menu.

7.2.5 Brightness & Contrast

BR	IGHT	NES	S & (CON	TRAST
-	_				
_		BRI	GHT	NE	SS
Ŀ				-	<u> </u>
		COI	NTR	AS	ſ
DE		T) (OK		BACK

7.2.6 RGB Color Code

	RGB C	OLOR C	ODE	
	R	G	в	
L1	140	000	000	
L2	255	191	204	
L3	000	000	255	
	B	ACK		

R	GB COL	OR CC	DE
VALID RA	NGE IS : 0	TO 255	
1	2	3	DEL
4	5	6	
7	8	9	ENTER
C)	BA	ACK

Standard color combinations

COLOR	R	G	В
Black	0	0	0
Blue	0	0	255
Brass	181	166	66
Bronze	204	128	51
Brown	166	41	41
Copper	184	115	51
Dark Blue	0	0	140
Dark Brown	102	66	33
Dark Green	0	51	33

The brightness & contrast of the TFT LCD screen can be varied by the user by sliding the sliders. Touching the "OK key" will OK confirm the current brightness contrast setting.

Touching the DEFAULT key will set brightness and contrast as per factory settings. Touching the BACK key will move back to the setup menu without making any changes.

This screen allows user to set the values of Red, Green and Blue components of colors used to display the parameters of all three phases. Different colors can be assigned to each phase using combination of Red, Green and Blue component values. L1, L2, L3 will be set to the assigned color.

To set these values, touch the corresponding rectangular section, 0 to 9 digit input keypad will appear. After entering the value using this keypad, user can confirm this value with a simple touch on

ENTER Key".

"BACK key" is used to go back to previous screen.

The allowable range for these values is 0 to 255. If a value outside this range is entered, it will display "VALID RANGE IS : 0 TO 255".

NOTE: Colors similar to background are not recommended.

COLOR	R	G	В
Dark Pink	232	84	128
Dark Purple	48	26	51
Dark Red	140	0	0
Dark Violet	148	0	212
Dark Yellow	156	135	13
Gold	212	176	56
Gray	128	128	128
Green	0	255	0
Indigo	74	0	130

COLOR	R	G	В
Light Blue	173	217	230
Maroon	176	48	97
Pink	255	191	204
Purple	161	33	240
Red	255	0	0
Silver	191	191	191
Violet	143	0	255
White	255	255	255
Yellow	255	255	0

8. Touch screen calibration

This instrument is able to perform calibration to ensure the proper operation of the units touch screen functionalities. The calibration procedure will correct the problem of out of tolerance touch screen malfunction. Note that errors corrected by this calibration procedure are specific only to touch screen operation.

9. Phase Rotation Error screen

Meter shows phase rotation error if the phase sequence R-Y-B (L1-L2-L3) is not maintained This screen indicates that Phase sequence is incorrect. User must check this screen in order to get correct readings When meter is connected.

s	SYSTEM RUN HOUR	R
	000001.19	
	hrs	
5		

Correct Phase sequence

This Screen indicates the phase sequence connected to meter is correct. If phase sequence is wrong this screen is useful to get correct phase sequence by interchanging connection & verifying it with screen.

This Screen indicates that either of the phases or all three phases (Voltages) are absent.

10. Run Hour

This Screen shows the total no. of hours the load is connected Even if the Auxiliary supply is interrupted count of Run hour will be maintained in internal memory & displayed in the format "hours. min". For example if Displayed count is 000001.19 hrs it indicates 1 hors & 19 minutes. After 999999.59 run hours display will restart from zero. To reset run hour manually see section Resetting Parameter 3.2.3.1

SYSTEM ON HOUR 000005.18 hrs Main System

11. On Hour

This Screen shows the total no. of hours the Axillary Supply is ON. Even if the Auxiliary supply is interrupted count of On hour will be maintained in internal memory & displayed in the format "hours. min". For example if Displayed count is 000005.18 hrs it indicates 15 hours & 18 minutes. After 999999.59 On hours display will restart from zero. To reset On hour manually see section Resetting Parameter 3.2.3.1

SYSTEM INTERRUPTIONS
00000012

MAIN SYSTEM

12. Number of Interruption

This Screen Displays the total no. of times the Axillary Supply was Interrupted. Even if the Auxiliary supply is interrupted count will be maintained in internal memory. To reset No of Interruption manually see section Resetting Parameter 3.2.3.1

13. Analog Output (optional)

This module provides two d.c. isolated outputs. There is one output option. Two 4 - 20mA outputs, internally powered.

The output signals are present on pins A1 (Analog Output 1) & A2 (Analog Output 2). These outputs can be individually assigned to represent any one of the measured and displayed Parameters.

All settlings are user configurable via the user interface screen. See Analog o/p selection (section 3.2.4.3 & section 3.2.4.4) for details.

* Note: Refer diagrams 1

TABLE 2: Parameter for Analog & Limit output

Diagram 1: (4 - 20 mA)

Parameter	Parameter	2D AW 2D 2W	2D 2W	Ra	Range	
No.	Falallelel	3F 4W	3F 3W	Analog Output	Limit Output	
0	None	•	•	-	-	
1	INPUT VOLTAGE L1	•	•	0 - 100 %	10 - 120 %	
2	INPUT VOLTAGE L2	•	•	0 - 100 %	10 - 120 %	
3	INPUT VOLTAGE L3	•	•	0 - 100 %	10 - 120 %	
4	INPUT CURRENT IL1	•	•	0 - 100 %	10 - 120 %	
5	INPUT CURRENT IL2	•	•	0 - 100 %	10 - 120 %	
6	INPUT CURRENT IL3	•	•	0 - 100 %	10 - 120 %	
7	ACTIVE POWER L1	•	Х	0 - 120 %	10 - 120 %	
8	ACTIVE POWER L2	•	Х	0 - 120 %	10 - 120 %	
9	ACTIVE POWER L3	•	Х	0 - 120 %	10 - 120 %	
10	APPARENT POWER L1	•	Х	0 - 120 %	10 - 120 %	
11	APPARENT POWER L2	•	Х	0 - 120 %	10 - 120 %	
12	APPARENT POWER L3	•	Х	0 - 120 %	10 - 120 %	
13	REACTIVE POWER L1	•	Х	0 - 120 %	10 - 120 %	
14	REACTIVE POWER L2	•	Х	0 - 120 %	10 - 120 %	
15	REACTIVE POWER L3	•	Х	0 - 120 %	10 - 120 %	
16	POWER FACTOR L1	•	х	180° / 0 / -180°	180° / 0 / -180°	
17	POWER FACTOR L2	•	Х	180° / 0 / -180°	180° / 0 / -180°	
18	POWER FACTOR L3	•	х	180° / 0 / -180°	180° / 0 / -180°	
19	PHASE ANGLE L1	•	х	180° / 0 / -180°	180° / 0 / -180°	
20	PHASE ANGLE L2	•	Х	180° / 0 / -180°	180° / 0 / -180°	
21	PHASE ANGLE L3	•	х	180° / 0 / -180°	180° / 0 / -180°	
22	Voltage avg	•	•	0 - 100 %	10 - 120 %	
24	CURRENT AVG	•	•	0 - 100 %	10 - 120 %	
27	ACTIVE POWER SUM	•	•	0 - 120 %	10 - 120 %	
29	APPARENT POWER SUM	•	•	0 - 120 %	10 - 120 %	
31	REACTIVE POWER SUM	•	•	0 - 120 %	10 - 120 %	
32	POWER FACTOR AVG	•	•	180° / 0 / -180°	180° / 0 / -180°	
34	PHASE ANGLE AVG	•	•	180° / 0 / -180°	180° / 0 / -180°	
36	FREQUENCY	•	•	45 to 66 Hz	10 - 100 % ¹	
43	WATT DEMAND IMPORT	•	•	0 - 120 %	10 - 120 %	
44	WATT MAX DEMAND IMP.	•	•	0 - 120 %	10 - 120 %	
45	WATT DEMAND EXPORT	•	•	0 - 120 %	10 - 120 %	
46	WATT MAX DEMAND EXP.	•	•	0 - 120 %	10 - 120 %	
51	VA DEMAND	•	•	0 - 120 %	10 - 120 %	
52	VA MAX DEMAND	•	•	0 - 120 %	10 - 120 %	

53	CURRENT DEMAND	•	•	0 - 100 %	10 - 120 %
54	CURRENT MAX DEMAND	•	•	0 - 100 %	10 - 120 %
101	INPUT VOLTAGE L12	•	Х	0 - 100 %	10 - 120 %
102	INPUT VOLTAGE L23	•	Х	0 - 100 %	10 - 120 %
103	INPUT VOLTAGE L31	•	Х	0 - 100 %	10 - 120 %
113	NEUTRAL CURRENT	•	Х	0 - 100 %	10 - 120 %

Note: Parameters 1,2,3 are L-N Voltage for 3P 4W & L-L Voltage for 3P 3W.

(1) For Frequency 0% corresponds to 40 Hz & 100% corresponds to 70 Hz.

14. Relay output (Optional)

This instrument is provided with either 1 relay for pulse output as well as for limit switch.

14.1 Pulse Output:

Pulse output is the potential free, very fast acting relay contact which can be used to drive an external mechanical counter for energy measurement. This instrument's pulse output can be configured to any of the following parameter through setup parameter screen.

- 1) Active Energy (Import)
- Active Energy (Export)
 Reactive Energy (Import)

4) Reactive Energy (Export)
 5) Apparent Energy
 6) Ampere hour

TABLE 3: Energy Pulse Rate Divisor

1. For Energy Output in Wh

	Pulse rate		
Divisor	Pulse	System Power *	
1	1per Wh	Up to 3600W	
	1per kWh	Up to 3600kW	
	1per Mwh	Above 3600kW	
10	1per 10Wh	Up to 3600W	
	1per 10kWh	Up to 3600kW	
	1per 10MWh	Above 3600kW	
100	1per 100Wh	Up to 3600W	
	1per 100kWh Up to 3600kW		
	1per 100MWh	Above 3600kW	
1000	1 per 1000Wh	Up to 3600W	
	1 per 1000kWh	Up to 3600kW	
	1per 1000MWh	Above 3600kW	
Pulse Duration 60 m	s, 100 ms or 200 ms		

2. For Energy Output in Kwh

	Pulse	e rate	
Divisor	Pulse	System Power *	
1	1per kWh	Up to 3600kW	
	1 per 1000kWh	Up to 3600kW	
	1per 1000MWh	Above 3600kW	

3. For Energy Output in Mwh

	Pulse	Pulse rate				
Divisor	Pulse	System Power *				
1	1 per Mwh	Up to 3600W				
	1 per 1000Mwh	Up to 3600W				
	1 per 1000Gwh Above 3600kW					

Above options are also applicable for Apparent and Reactive Energy.

* System power = $3 \times CT(Primary) \times PT(Primary)_{LN}$ for 3 Phase 4 Wire System power = Root3 x CT(Primary) x PT(Primary)_{LI} for 3 Phase 3 Wire

Ampere Hour:

Divisor 1(Default)

- CT secondary = 1A Max pulse rate 3600 pulses per Ah **
- CT secondary = 5A Max pulse rate 720 pulses per Ah **

Divisors 10

CT secondary = 1A Max pulse rate 3600 pulses per 10Ah ** CT secondary = 5A Max pulse rate 720 pulses per 10Ah **

Divisors 100

CT secondary = 1A Max pulse rate 3600 pulses per 100Ah ** CT secondary = 5A Max pulse rate 720 pulses per 100Ah ** Divisors 1000

CT secondary = 1A Max pulse rate 3600 pulses per 1000Ah ** CT secondary = 5A Max pulse rate 720 pulses per 1000Ah **

Pulse duration 60 ms, 100 ms or 200 ms **No. of Pulses per Ampere hour = Maximum Pulses / CT Ratio Where, CT Ratio = (CT primary/ CT Secondary)

14.2 Limit Switch

Limit switch can be used to monitor the measured parameter (Ref.Table:2) in relation with to a set limit.

The limit switch can be configured in one of the four mode given below:

1) Hi alarm & Relay Energized Relay..

- 2) Hi alarm & De-Energized Relay.
- 3) Lo alarm & Energized Relay.
- 4) Lo alarm & De-Energized Relay.

Limit switch has user selectable Trip point, Hysteresis, Energizing Delay & De-Energizing delay.

Hi Alarm:

If Hi-Alarm Energized or Hi Alarm De-Energized option is selected then relay will get energized or De-energized, if selected parameter is greater than or equal to trip point.

Low Alarm:

If Lo-Alarm Energized or Lo Alarm De-Energized option is selected then relay will get energized or De-energized, if selected parameter is less than or equal to trip point.

Trip point:

Trip point can be set in the range of 10% to 120% of nominal value for Hi-Alarm & 10% to 100% of nominal value for Lo-Alarm.

Hysteresis:

Hysteresis can be set in the range of 0.5% to 50% of set trip point. If Hi-alarm Energized or Hi-alarm De-energized is selected then relay will get De-energized or Energized respectively, if set parameter value is less than Hysteresis Similarly if Lo-alarm Energized or Lo-alarm De-Energized.

Energizing Delay:

The energizing delay can be set in the range from1 to 10 sec.

De-Energizing Delay:

The De-energizing delay can be set in the range from1 to 10 sec.

Note: In case of Io alarm if trip point is set at 100% then maximum 20%

Hysterisis can be set.

Example of different configuration. Parameter No: 4 (Current 1) Trip Point = 50% Hysteresis = 50% of trip point Energising Delay: 2s De-energising Delay: 2s

2) Hi alarm & De-energised relay

4) Lo alarm & De-energised relay

15. Phasor Diagram

Quadrant 1: 0° to 90° Quadrant 2: 90° to 180° Quadrant 3: 180° to 270° Quadrant 4: 270° to 360°

In this diagram a technical visualization of the current and voltage phasors is shown, using a clockwise rotation.

Connections	Quadrant	Sign of Active Power (P)	Sign of Reactive Power (Q)	Sign of Power Factor (PF)	Inductive/ Capacitive
Import	1	+ P	+ Q	+	L
Import	4	+ P	- Q	+	С
Export	2	- P	+ Q	-	С
Export	3	- P	- Q	-	L

Inductive means Current lags Voltage Capacitive means Current leads Voltage

When the instrument displays Active power (P)with " + " (positive sign), the connection is " **Import**". When the instrument displays Active power (P)with " - " (negative sign), the connection is " **Export**".

16. Technical data

System

Connection types: Nominal frequency: Measurement TRMS:

Inputs

Nominal input voltage: Max continuous input voltage: Max short duration input voltage: Nominal input voltage burden: Nominal input current: Max continuous input current: Nominal input current burden: Max short duration current input: System CT primary values:

Auxiliary

Standard nominal Auxillary: a.c. supply voltage tolerance: d.c. supply voltage tolerance: a.c. supply burden: d.c. supply burden:

Operating Measuring Ranges

Voltage: Current: Power Factor: 3 Phase 3 Wire / 4 Wire programmable at site 45 ... 50/60 ... 66 Hz Up to the 15th harmonic

57,7 V_{L-N} ... 277 V_{L-N} (100 V_{L-L} ... 480 V_{L-L}) 120% of Rated Value

2 x Rated Value (1s application repeated 10 times at 10s intervals) 0.2VA approx. per phase 5A AC rms 120% of Rated Value 0.6VA approx. per phase 20 x Rated Value (1s application repeated 5 times at 5 min. intervals) Std. Values from 1 to 9999A (1 or 5 Amp secondaries)

100 - 250V AC- DC +10 % / -10 % of Rated Value +10 % / -10 % of Rated Value 6.5VA 3W

5 .. 120 % of Rated Value 5 .. 120 % of Rated Value 0.5 Lag ... 1 ... 0.8 Lead

Accuracy

Voltage / Current: Frequency: Active / Re-Active Power: Apparent Power: Active / Re-Active Energy: Apparant Energy: Power Factor: Angle: Analog Output: Total Harmonic Distortion: Neutral Current:

Reference conditions for Accuracy

Reference temperature: Input frequency: Input waveform: Auxiliary supply voltage / frequency: Voltage Range:

Current Range:

Power:

Power Factor / Phase Angle:

Nominal range of use of influence quantities for measurands

Voltage: Current: Input frequency: Temperature: Auxiliary supply voltage: Auxiliary supply frequency: Temperature Coefficient: (For Rated value range of use 0...50° C) Error change due to variation of an influence quantity:

Mechanical attributes

Orientation: Dimensions: Bezel size: Panel cut out: Overall depth: Material: TFT LCD: Update: User Interface: Terminals: Weight:

Environmental conditions

Operating temperature: Storage temperature: Relative humidity: Warm up time: Shock: Vibration: Enclosure (IP for water & dust): 0.15% of mid frequency \pm 0.5% of range \pm 0.5% of range \pm 0.5% of range \pm 0.5% of range \pm 1% of Unity \pm 1% of range \pm 1% of Output end value \pm 1% \pm 4% of range

 ± 0.5 % of range

23 C + 2 C 50 or 60Hz + 2% Sinusoidal (distortion factor 0.005) Rated Value + 1 % 50... 100% of Nominal Value. 60... 100% of Nominal Value for THD. 10... 100% of Nominal Value. 20... 100% of Nominal Value for THD. osØ / sinØ = 1 For Active / Reactive Power & Energy 10... 100% of Nominal Current & 50... 100% of Nominal Voltage. 40... 100% of Nominal Current & 50... 100% of Nominal Voltage.

50 .. 120 % of Rated Value 10 .. 120 % of Rated Value Rated Value + 10 % 0 to 50° C Rated Value + 10 % Rated Value + 10 % 0.025% / °C for Voltage (50..120% of Rated Value) 0.05% / °C for Current (10..120% of Rated Value) 2 * Error allowed for the reference condition applied in the test.

Any

see dimensional drawing 96 mm x 96 mm (DIN 43718) 92+0.8mm x 92+0.8mm detail see cut out drawing 80 mm PC 10% unfilled 3.5" Graphical LCD, resolution 320x240 pixels Approx. 1 seconds Resistive Touch screen Screw-type terminals 0.620 kg Approx.

-10 to 55 ° C -20 to +65 °C 0 .. 90 % RH 3 minute (minimum) 150 m/s² (15g) in 3 planes 10 .. 55 Hz, 0.15mm amplitude IP 54 (front), IP 20 (housing/terminals) acc. to IEC 60529

Standards EMC Emmision: IEC 61326-1: 2005 EMC Immunity: 10 V/m min (IEC 61000-4-3) Safety: IEC 61010-1: 2001 Protection class: Ш 2 Pollution degree: Installation category: CATIII High voltage test: 2.2 kV RMS 50 Hz for 1 minute between all electrical circuits Pulse output Option (1 Relay) Relay: 1NO + 1NCSwitching Voltage & Current: 240VDC, 5Amp. 1 per Wh (up to 3600W), Default Pulse rate Divisor: 1 per kWh (up to 3600kW), 1 per MWh (above 3600 kW) Pulse rate Divisors 10 1 per 10Wh (up to 3600W), 1 per 10kWh (up to 3600kW), 1 per 10MWh (above 3600 kW) 1 per 100Wh (up to 3600W), 100 1 per 100kWh (up to 3600kW), 1 per 100MWh (above 3600 kW) 1000 1 per 1000Wh (up to 3600W), 1 per 1000kWh (up to 3600kW), 1 per 1000MWh (above 3600 kW) 60ms, 100ms or 200ms Pulse Duration ModBus (RS 485) Option:

Note: Above conditions are also applicable for Reactive & Apparent Energy .

ModBus RTU (RS 485) Option:

ModBus TCP (Ethernet, RJ45) Option:	
Parity:	Odd or Even, with 1 stop bit, Or None with 1 or 2 stop bits
Baud Rate:	19200 , 9600 , 4800 or 2400 (Programmable)
Protocol:	ModBus RTU (RS 485)

Modbus TCP

10/100 MBit/s

192.168.11.11

Protokoll: Mode: Factory setting IP adress:

Analog Output Option:

Linear:

2 x 4 ... 20mA dc into 0 - 500 ohm Uni-directional, internally powered.

16.1 Dimensional drawings

16.2 Connection and programming via RS485 (Modbus RTU) interface

Follow the subsequent steps to program the transducer via the RS485 interface and Modbus:

Step 1: Connection

Connect the Modbus cable according to the connection diagram in Chapter 5.3. Please observe also the information in the Modbus (RS485) interface definition.

Step 2: Programming

Program SIRAX MM1200 via the Modbus RTU interface and the CB-Configurator software. Please observe the detailed Modbus description in Chapter 18. After completing the programming, the device must be rebooted.

Connect the power supply to SIRAX MM1200 before programming.

16.3 Connection and programming via Ethernet RJ45 (Modbus TCP) interface

If you program the transmitter via the Ethernet RJ45 interface and Modbus, the following steps must be followed:

Step 1: Connection

Connect the Ethernet cable to the RJ45 interface on the device.

Step 2: Programming

The SIRAX MM1200 is programmed via the Modbus TCP interface and the CB Configurator software. The device is delivered with a factory-preset IP address of "192.168.11.11". This can be changed in the CB-Configurator software (see CB-Configurator Software manual). Please note that the device must be rebooted after adapting the new IP address. The detailed Modbus descriptions can be found in chapter 18. The power supply must be connected to the SIRAX MM1200 before it can be programmed.

17. Interface Definition Modbus (RS485)

THE MULTIFUNCTION ENERGY METER supports MODBUS (RS485) RTU protocol (2-wire).

Connection should be made using twisted pair shielded cable. All "A" and "B" connections are daisy chained together. The screens should also be connected to the "Gnd" terminal. To avoid the possibility of loop currents, an Earth connection should be made at one point on the network. Loop (ring) topology does not require any termination load. Line topology may or may not require terminating loads depending on the type and length of cable used. The impedance of the termination load should match the impedance of the cable and be at bothends of the line. The cable should be terminated at each end with a 120 ohm (1/4 Watt min.) resistor.

RS 485 network supports maximum length of 1.2km. Including the Master, a maximum of 32 instruments can be connected in RS485 network. The permissible address range for the Meter is between 1 and 247 for 32 instruments. Broadcast Mode (address 0) is not allowed.

The maximum latency time of an Meter is 200ms i.e. this is the amount of time that can pass before the first response character is output.

After sending any query through software (of the Master), it must allow 200ms of time to elapse before assuming that the Meter is not going to respond. If slave does not respond within 200 ms, Master can ignore the previous query and can issue fresh query to the slave.

The each byte in RTU mode has following format:

	· · · · · · · · · · · · · · · · · · ·
	8-bit binary, hexadecimal 0-9, A-F 2 hexadecimal characters contained in each 8-bit field of the message
Format of Data Bytes	4 bytes (32 bits) per parameter. Floating point format (to IEEE 754) Most significant byte first (Alternative least significant byte first)
Error Checking Bytes	2 byte Cyclical Redundancy Check (CRC)
Byte format	 1 start bit, 8 data bits, least significant bit sent first 1 bit for even/odd parity 1 stop bit if parity is used; 1 or 2 bits if no parity
Communication Raud Pata is use	or colociable from the front panel between 2400, 4800, 0600, 10200 bpc

Communication Baud Rate is user selectable from the front panel between 2400, 4800, 9600, 19200 bps.

Function code:

03	Read Holding Registers	Read content of read /write location (4X)
04	Read input Registers	Read content of read only location (3X)
16	Presets Multiple Registers	Set the content of read / write locations (4X)

Exception Cases: An exception code will be generated when Meter receives ModBus query with valid parity and error check but which contains some other error (e.g. Attempt to set floating point variable to an invalid value). The response generated will be "Function code" ORed with HEX (80H). The exception codes are listed below.

01	Illegal function	The function code is not supported by Meter
02	Illegal Data Address	Attempt to access an invalid address or an attempt to read or write part of a floating point value
03	Illegal DataValue	Attempt to set a floating point variable to an invalid value

17.1 Accessing 3 X register for reading measured values

Two consecutive 16 bit registers represent one parameter. Refer **TABLE 1:3 X register addresses** (Parameters measured by the instruments). Each parameter is held in the 3X registers. Modbus Code 04 is used to access all parameters.

Example :

To read parameter,

Volts 3: Start address = 04 (Hex) Number of registers = 02

Note: Number of registers = Number of parameters x 2

Each Query for reading the data must be restricted to 20 parameters or less. Exceeding the 20 parameter limit will cause a ModBus exception code to be returned.

Query:

01 (Hex)	04 (Hex)	00 (Hex)	04 (Hex)	00 (Hex)	02 (Hex)	30 (Hex)	0A (Hex)
Device	Function	Start Adress	Start Adress	Number of	Number of	CRC	CRC
Address	Code	High	Low	Registers Hi	Registers Low	Low	High

Start Address High: Most significant 8 bits of starting address of the parameter requested.

Start Address low: Least significant 8 bits of starting address of the parameter requested.

Number of register Hi: Most significant 8 bits of Number of registers requested.

Number of register Lo: Least significant 8 bits of Number of registers requested.

(Note: Two consecutive 16 bit register represent one parameter.)

Response: Volt3 (219.25V)

01 (Hex)	04 (Hex)	04 (Hex)	43 (Hex)	5B (Hex)	41 (Hex)	21 (Hex)	6F (Hex)	9B (HEX)
Device	Function	Byte Count	Data Register1	Data Register1	Data Register2	Data Register2	CRC	CRC
Address	Code		High Byte	Low Byte	High Byte	Low Byte	Low	High

Byte Count: Total number of data bytes received.

Data register 1 High Byte: Most significant 8 bits of Data register 1 of the parameter requested. Data register 1 Low Byte: Least significant 8 bits of Data register 1 of the parameter requested. Data register 2 High Byte: Most significant 8 bits of Data register 2 of the parameter requested. Data register 2 Low Byte: Least significant 8 bits of Data register 2 of the parameter requested. **(Note: Two consecutive 16 bit register represent one parameter.)**

Table 1: 3 X register addresses (measured parameters)

Adress	Doromotor No	Parameter –	Modbus Start	Adress Hex		20 2/1/
(Register)	Falameter NO.		High Byte	Low Byte	5F 4W	JF 3W
30001	1	Volts 1	00	0	•	•
30003	2	Volts 2	00	2	•	•
30005	3	Volts 3	00	4	•	•
30007	4	Current 1	00	6	•	•
30009	5	Current 2	00	8	•	•
30011	6	Current 3	00	А	•	•
30013	7	W1	00	С	•	х

30015	8	W2	00	E	•	х
30017	9	W3	00	10	•	Х
30019	10	VA 1	00	12	•	х
30021	11	VA 2	00	14	•	Х
30023	12	VA 3	00	16	•	Х
30025	13	VAR 1	00	18	•	х
30027	14	VAR 2	00	1A	•	х
30029	15	VAR 3	00	10	•	х
30031	16	PF 1	00	1E	•	х
30033	17	PF 2	00	20	•	Х
30035	18	PF 3	00	22	•	х
30037	19	Phase Angle 1	00	24	•	Х
30039	20	Phase Angle 2	00	26	•	Х
30041	21	Phase Angle 3	00	28	•	х
30043	22	Volts Ave	00	2A	•	•
30045	23	Volts Sum	00	2C	•	•
30047	24	Current Ave	00	2E	•	•
30049	25	Current Sum	00	30	•	•
30051	26	Watt Ave	00	32	•	•
30053	27	Watt Sum	00	34	•	•
30055	28	VA Ave	00	36	•	•
30057	29	VA Sum	00	38	•	•
30059	30	VAR Ave	00	ЗA	•	•
30061	31	VAR Sum	00	3C	•	•
30063	32	PF Ave	00	3E	•	•
30065	33	PF Sum	00	40	•	Х
30067	34	Phase Angle Ave	00	42	•	•
30069	35	Phase Angle Sum	00	44	•	Х
30071	36	Freq	00	46	•	•
30073	37	Wh Import / Utility	00	48	•	•
30075	38	Wh Export / Gen	00	4A	•	•
30077	39	Capacitive / Utility VARh	00	4C	•	•
30079	40	Inductive / Gen VARh	00	4E	•	•
30081	41	VAh / Vah Utility	00	50	•	•
30083	42	Ah	00	52	•	•
30085	43	W Demand (Import)	00	54	•	•
30087	44	W Max Demand (Import)	00	56	•	•
30089	45	W Demand (Export)	00	58	•	•
30091	46	W Max Demand (Export)	00	5A	•	•
30093	47	-	—	—	—	—
30095	48	-	—	—	_	_
30097	49	-	—	—	—	—
30099	50	-	_	_	_	_
30101	51	VA Demand	00	64	•	•
30103	52	VA Max Deman	00	66	•	•
30105	53	A Demand	00	68	•	•
30107	54	A Max Demand	00	6A	•	•
30133	67	System Max Voltage	00	84	•	•
30135	68	System Min Voltage	00	86	•	•

30141	71	System Max Currrent	00	8C	•	•
30143	72	System Min Current	00	8E	•	•
30201	101	VL 1 - 2 (Calculated)	00	C8	•	Х
30203	102	VL 2 - 3 (Calculated)	00	CA	•	Х
30205	103	VL 3- 1 (Calculated)	00	CC	•	х
30207	104	V1 THD (%)	00	CE	•	•
30209	105	V2 THD (%)	00	DO	•	•
30211	106	V3 THD (%)	00	D2	•	•
30213	107	I1 THD (%)	00	D4	•	•
30215	108	I2 THD (%)	00	D6	•	•
30217	109	I3 THD (%)	00	D8	•	•
30219	110	System Voltage THD (%)	00	DA	•	•
30221	111	System Current THD (%)	00	DC	•	•
30225	113	l Neutral	00	EO	•	Х
30227	114	Run Hour	00	E2	•	•
30229	115	On Hour	00	E4	•	•
30231	116	No. of Interruptions	00	E6	•	•

TNote: Parameters 1,2,3 are L-N Voltage for 3P 4W & L-L Voltage for 3P 3W.

17.2 Accessing 4 X register for reading & Writing Settings

Each setting is held in the 4X registers. ModBus code 03 is used to read the current setting & code 16 is used to write/change the setting. Refer **TABLE 2** for 4X Register addresses.

Example: Reading System type

System type: Start address = 0A (Hex) Number of registers = 02 Note: Number of registers = Number of parameters x 2

Query:

01 (Hex)	03 (Hex)	00 (Hex)	0A (Hex)	00 (Hex)	02 (Hex)	E4 (Hex)	09 (Hex)
Device	Function	Start Address	Start Address	Number of	Number of	CRC	CRC
Address	Code	High	Low	Registers Hi	Registers Lo	Low	High

Start Address High: Most significant 8 bits of starting address of the parameter requested.

Start Address low: Least significant 8 bits of starting address of the parameter requested.

Number of register Hi: Most significant 8 bits of Number of registers requested.

Number of register Lo: Least significant 8 bits of Number of registers requested.

(Note: Two consecutive 16 bit register represent one parameter.)

Response: System Type (3phase 4 wire = 3)

01 (Hex)	03 (Hex)	04 (Hex)	40 (Hex)	40 (Hex)	00 (Hex)	00 (Hex)	EE (Hex)	27 (Hex)
Device	Function	Byte	Data Register1	Data Register1	Data Register2	Data Register2	CRC	CRC
Address	Code	Count	High Byte	Low Byte	High Byte	Low Byte	Low	High

Byte Count : Total number of data bytes received.

Data register 1 High Byte: Most significant 8 bits of Data register 1 of the parameter requested. Data register 1 Low Byte: Least significant 8 bits of Data register 1 of the parameter requested. Data register 2 High Byte: Most significant 8 bits of Data register 2 of the parameter requested. Data register 2 Low Byte: Least significant 8 bits of Data register 2 of the parameter requested. **(Note: Two consecutive 16 bit register represent one parameter.)**

Example : Writing System type

System type : Start address = 0A (Hex) Number of registers = 02

Query: (Change System type to 3phase 3wire = 2)

01 (He)	:) 10 (Hex)	00 (Hex)	0A (Hex)	00 (Hex)	02 (Hex)	04 (Hex)	40 (Hex)	00 (Hex)	00 (Hex)	00 (Hex)	66 (Hex)	10 (Hex)
Device Addres	Function s Code	Start Address High	Start Address Low	Number of Registers Hi	Number of Registers Low	Byte Count	Data Register1 High Byte	Data Register1 Low Byte	Data Register2 High Byte	Data Register2 Low Byte	CRC Low	CRC High

Byte Count: Total number of data bytes received.

Data register 1 High Byte: Most significant 8 bits of Data register 1 of the parameter requested. Data register 1 Low Byte: Least significant 8 bits of Data register 1 of the parameter requested. Data register 2 High Byte: Most significant 8 bits of Data register 2 of the parameter requested. Data register 2 Low Byte: Least significant 8 bits of Data register 2 of the parameter requested.

(Note: Two consecutive 16 bit register represent one parameter.)

Response:

01 (Hex)	10 (Hex)	00 (Hex)	0A (Hex)	00 (Hex)	02 (Hex)	61 (Hex)	CA (Hex)
Device	Function	Start Address	Start Address	Number of	Number of	CRC	CRC
Address	Code	High	Low	Registers Hi	Registers Low	Low	High

Start Address High: Most significant 8 bits of starting address of the parameter requested.

Start Address low: Least significant 8 bits of starting address of the parameter requested.

Number of register Hi: Most significant 8 bits of Number of registers requested.

Number of register Lo: Least significant 8 bits of Number of registers requested.

(Note: Two consecutive 16 bit register represent one parameter.)

Table 2: 4 X register addresses

Adress Paramete		Parameter	Read / Write	Modbus Start Adress Hex		
(Register)	No.			High Byte	Low Byte	
40001	1	Demand Reset	R/Wp	00	00	
40003	2	Demand Period	R/Wp	00	02	
40005	3	Energy on RS485	R/Wp	00	04	
40007	4	System Voltage	R	00	06	
40009	5	System Current	R	00	08	
40011	6	System Type	R/Wp	00	0A	
40013	7	Pulse Width	R/Wp	00	OC	
40015	8	Energy Reset	Wp	00	0E	
40017	9	Run/On Hour & Interruption Reset	R/Wp	00	10	
40019	10	RS485 Set-up Code	R/Wp	00	12	
40021	11	Node Address	R/Wp	00	14	
40023	12	Pulse Divisor	R/Wp	00	16	
40025	13	Min Reset	WP	00	18	
40027	14	Max Reset	WP	00	1A	
40029	15	Analog Out 1- Para Sel	R/Wp	00	1C	
40031	16	Analog Out 2- Para Sel	R/Wp	00	1E	
40033	17	PT Primary	R/Wp	00	20	
40035	18	CT Primary	R/Wp	00	22	
40037	19	System Power	R	00	24	
40039	20	Energy Digit Reset Count	R/Wp	00	26	
40041	21	Register Order / Word Order	R/Wp	00	28	
40043	22	CT Secondary	R/Wp	00	2A	
40045	23	PT Secondary	R/Wp	00	20	
40047	24	Relay 1 output select	R/Wp	00	2E	
40049	25	Pulse 1 / Limit 1 Parameter select	R/Wp	00	30	
40051	26	Limit 1 Trip point	R/Wp	00	32	
40053	27	Limit 1 Hysteresis	R/Wp	00	34	

40055	28	Limit 1 Delay (On)	R/Wp	00	36
40057	29	Limit 1 Delay (Off)	R/Wp	00	38
40071	36	Password	R/W	00	46
40073	37	Limit 1 Configuration select	R/Wp	00	48
40079	40	30mA Noise Current Elimination	R/Wp	00	4E
Wp: Write protected		R: Read only R/Wp: F	ead & Write protected		

Explanation for 4X register:

Adress	Parameter	Description
40001	Demand Reset	Demand Reset is used to reset the Demand parameter. A value of zero must be Written to this register to reset the Demand period. Writing any other value will return an error.
40003	Demand Period	Demand period represents demand time in minutes. The applicable values are 8,15,20 or 30. Wri- ting any other value will return an error.
40005	Energy display on Modbus	This address is used to set energy display on MODBUS in Wh, KWh & Mwh.Write one of the following value to this address.1 = Energy in Wh.2 = Energy in KWh.3 = Energy in MWh.
40007	System Voltage	This address is read only and displays System Voltage
40009	System Current	This address is read only and displays System Current
40011	System Type	This address is used to set the System type. Write one of the following value to this address. 1: 3 Phase 3 Wire 2: 3 Phase 4 Wire. Writing any other value will return error.
40013	Pulse Width of Relay	This address is used to set pulse width of the Pulse output. Write one of the following values to this address: 60: 60 ms 100: 100 ms 200: 200 ms Writing any other value will return error.
40015	Reset Energy Counter	This address is used to reset the Energy Counter. Write zero value to this register to reset the energy counter. Writing any other value will return an error.
40017	Run/On Hour & Inter- ruption reset	This address is used to reset the Run/On hour & number of Interruption. Write zero value to this register to reset the Run/On hour & number of Interruption. Writing any other value will return an error.
40019	Rs485 Set-up Code	This address is used to set the baud rate, Parity, Number of stop bits. Refer to TABLE 3 for details.
40021	Node Address	This register address is used to set Device address between 1 to 247.
40023	Pulse Divisor	This address is used to set pulse divisor of the Pulse output. Write one of the following values to this address for Wh: 1: Divisor 1 10: Divisor 10 100: Divisor 100 1000: Divisor 1000 & in KWh & MWh Divisior will be 1 default. Writing any other value will return an error. Pulse rate divisor is set to 1, when Energy on Rs485 is set to kWh or MWh.
40025	Min - Reset	This address is used to reset the Min parameters value. Write Zero value to this register to reset the Min parameters. Writing any other value will return an error.
40027	Max - Reset	This address is used to reset the Max parameters value. Write Zero value to this register to reset the Max parameters. Writing any other value will return an error.
40029	Analog Out 1- Para Set	This address is used to set the parameter for Analog Output 1. Write one of the parameter no. As per the options given in Table 2 for Analog & Limit Output Parameters. Writing any other value will return an error.
40031	Analog Out 2- Para Set	This address is used to set the parameter for Analog Output 2. Write one of the parameter no. As per the options given in Table 2 for Analog & Limit Output Parameters. Writing any other value will return an error.
40033	PT Primary	This address allows the user to set PT Primary value. The maximum settable value is 692.8kV L-L depends on the per phase 666.6MVA Restriction of power combined with CT primary.

Adress	Parameter	Description
40035	CT Pimary	This address allows the user to set CT Primary value. The maximum settable value is 9999 & also depends on the per phase 666.6MVA Restriction of power combined with PT primary.
40037	Sys Power	System Power (Read Only) is the Nominal system power based on the values of Nominal system volts and Nominal system current.
40039	Energy digit Reset Count	This address is used to set the rollover count for energy. If Energy on Rs485 is in Wh rollover count can be from 7 to 14. If it is in KWh then rollover count can be from 7 to 12 & for MWh rollover count can be from 7 to 9.
40041	Word Order	Word Order controls the order in which Multifunction Meter receives or sends floating - point num- bers:- normal or reversed register order . In normal mode, the two registers that make up a floating point numbers are sent most significant bytes first. In reversed register mode, the two regis-ters that make up a floating point numbers are sent least significant bytes first. To set the mode, write the value '2141.0' into this register-the instru-ment will detect the order used to send this value and set that order for all ModBus transaction involving floating point numbers.
40043	CT secondary	This address is used to read and write the CT secondary value. Write one of the following values to this address. 1: 1A CT secondary 5: 5A CT secondary writing any other value will return an error.
40045	PT secondary	This address is used to read and write the PT secondary value. Ref Table for the range of PT secondary settable values in Section 7.2.1.3
40047	Relay1 output select	This address is used to select the Relay1 operation as pulse or Limit. Write one of the following values to this address. 0: Pulse output on Relay1 128 (Decimal): Limit output on Relay1. Writing any other value will return an error.
40049	Pulse 1 / Limit 1 parameter select	This address is used to assign the Parameter to Relay1 If Limit option is selected refer TABLE 4 for parameter number & if Pulse option is selected then refer TABLE 6.
40051	Limit 1 Trip Point	This address is used to set the trip point in %. Any value between 10 to 100 for Lo- alarm & 10 to 120 (refer TABLE 4) for Hi-alarm can be written to this address. Writing any other value will return an error.
40053	Limit 1 Hysteresis	This address is used to set the hysteresis between 0.5 to 50.0%. Writing any other value will return an error.
40055	Limit 1 Energizing Delay	This address is used to set the Energizing delay between 1 to 10. Writing any other value will return an error.
40057	Limit 1 De-energizing Delay	This address is used to set the De-Energizing delay between 1 to 10. Writing any other value will return an error.
40071	Password	 This address is used to set & reset the password. Valid Range of Pass-word can be set is 0000 - 9999. 1) If password lock is present & if this location is read it will return zero. 2) If Password lock is absent & if this location is read it will return One. 3) If password lock is present & to disable this lock first send valid pas word to this location then write "0000" to this location 4) If password lock is present & to modify 4X parameter first send valid password to this location so that 4X parameter will be accessible for modification. 5) If for in any of the above case invalid password is send then meter will return exceptional error 2.
40073	Limit 1 Configuration Select	This address is used to set the Configuration for Relay 1 see TABLE 5. Writing any other value will return an error.
40079	30mA Noise current Elimination	This address is used to activate or de-activate the 30 mA noise current elimination write 0: Deactivate 30 (Decimal): Activate Writing any other value will return an error.

Table 3: RS485 Set-up Code

Baud Rate	Parity	Stop Bit	Decimal value	Baud Rate	Parity	Stop Bit	Decimal value
2400	NONE	01	0	9600	NONE	01	8
2400	NONE	02	1	9600	NONE	02	9
2400	EVEN	01	2	9600	EVEN	01	10
2400	ODD	01	3	9600	ODD	01	11
4800	NONE	01	4	19200	NONE	01	12
4800	NONE	02	5	19200	NONE	02	13
4800	EVEN	01	6	19200	EVEN	01	14
4800	ODD	01	7	19200	ODD	01	15

NOTE: Codes not listed in the table above may give rise to unpredictable results including loss of communication. Exercise caution when attempting to change mode via direct Modbus writes.

Table 4: Pulse1 Configuration select

Code	Configuration
0	Import Active Energy
1	Export Active Energy
2	Import Reactive Energy
3	Export Reactive Energy
4	Apparent Energy

Table 5: Limit1 Configuration select

Code	Configuration
0	Hi- alarm & Energized relay
1	Hi- alarm & De-energized relay
2	Lo- alarm & Energized relay
3	Lo- alarm & De-energized relay

17.3 User Assignable Modbus Register

The Multifunction Energy Meter contains 20 user assignable registers in the address range of 0x200 (30513) to 0x226 (30551) (see TABLE 6). Any of the parameter addresses (3X register addresses TABLE 1) accessible in the instrument can be mapped to these 20 user assignable registers.

Parameters (3X registers addresses) that resides in different locations may be accessed by the single request by re-mapping them to adjacent address in the user assignable registers area.

The actual address of the parameters (3X registers addresses) which are to be accessed via address 0x200 to 0x226 are specified in 4X Register 0x200 to 0x213. (see TABLE 7)

Adress	Parameter	Assignable Register	Modbus Star	t Adress Hex
(Register)	Number		High Byte	Low Byte
30513	257	Assignable Reg 1	02	00
30515	258	Assignable Reg 2	02	02
30517	259	Assignable Reg 3	02	04
30519	260	Assignable Reg 4	02	06
30521	261	Assignable Reg 5	02	08
30523	262	Assignable Reg 6	02	0A
30525	263	Assignable Reg 7	02	0C
30527	264	Assignable Reg 8	02	0E
30529	265	Assignable Reg 9	02	10
30531	266	Assignable Reg 10	02	12

Table 6: User Assignable 3X Data Registers

30533	267	Assignable Reg 11	02	14
30535	268	Assignable Reg 12	02	16
30537	269	Assignable Reg 13	02	18
30539	270	Assignable Reg 14	02	1A
30541	271	Assignable Reg 15	02	1C
30543	272	Assignable Reg 16	02	1E
30545	273	Assignable Reg 17	02	20
30547	274	Assignable Reg 18	02	22
30549	275	Assignable Reg 19	02	24
30551	276	Assignable Reg 20	02	26
40513	257	Mapped Add for register #0x0200	02	00
40514	258	Mapped Add for register #0x0202	02	01
40515	259	Mapped Add for register #0x0204	02	02
40516	260	Mapped Add for register #0x0206	02	03
40517	261	Mapped Add for register #0x0208	02	04
40518	262	Mapped Add for register #0x020A	02	05
40519	263	Mapped Add for register #0x020C	02	06
40520	264	Mapped Add for register #0x020E	02	07
50521	265	Mapped Add for register #0x0210	02	08
40522	266	Mapped Add for register #0x0212	02	09
40523	267	Mapped Add for register #0x0214	02	0A
40524	268	Mapped Add for register #0x0216	02	OB
40525	269	Mapped Add for register #0x0218	02	00
40526	270	Mapped Add for register #0x021A	02	OD
40527	271	Mapped Add for register #0x021C	02	0E
40528	272	Mapped Add for register #0x021E	02	0F
40529	273	Mapped Add for register #0x0220	02	10
40530	274	Mapped Add for register #0x0222	02	11
40531	275	Mapped Add for register #0x0224	02	12
40532	276	Mapped Add for register #0x0226	02	13

Example:

Assigning parameter to User Assignable Registers:

To access the voltage2 (3X address 0x0002) and Power Factor1 (3X address 0x001E) through user assignable register assign these addresses to 4x register (TABLE 7) 0x0200 and 0x0201 respectively.

							Voltag (3X Adress	je 2* s 0x0002)	Power I (3X Adres	Factor 1* ss 0x001E)		
Assigning	Query:						\sim	$\overline{}$		\sim	1	
01 (Hex)	10 (Hex)	02 (Hex)	00 (Hex)*	00 (Hex)*	02 (Hex)*	04 (Hex)	00 (Hex)	02 (Hex)	00 (Hex)	1E (Hex)	CB (Hex)	07 (Hex)
Device	Function	Start	Start	Number of	Number of	Byte	Data	Data	Data	Data	CRC	CRC
Address	Code	Address	Address	Registers	Registers	Count	Register1	Register1	Register2	Register2	Low	High
		High	Low	Hi	Low		High Byte	Low Byte	High Byte	Low Byte		

* Note: Parameters should be multiplied by a multiple of two, i. 2, 4, 6, 8 20.

Response:

01 (Hex)	10 (Hex)	02 (Hex)	00 (Hex)	00 (Hex)	02 (Hex)	40 (Hex)	70 (Hex)
Device	Function	Start Address	Start Address	Number of	Number of Registers Low	CRC	CRC
Address	Code	High	Low	Registers Hi		Low	High

Reading Parameter data through User Assignable Registers:

In assigning query Voltage 2 & Power Factor 1 parameters were assigned to 0x 200 & 0x201 (TABLE 7) which will point to user assignable 3x registers 0x200 and 0x202 (TABLE 6). So to read Voltage2 and Power Factor1 data reading query should be as below.

Query:

01 (Hex)	04 (Hex)	02 (Hex)	00 (Hex)	00 (Hex)	04 (Hex)**	F0 (Hex)	71 (Hex)
Device	Function	Start Address	Start Address	Number of	Number of	CRC	CRC
Address	Code	High	Low	Registers Hi	Registers Low	Low	High

Start Address High: Most significant 8 bits of starting address of User assignable register. Start Address low: Least significant 8 bits of starting address of User assignable register. Number of register Hi: Most significant 8 bits of Number of registers requested. Number of register Lo: Least significant 8 bits of Number of registers requested.

****Note:** Two consecutive 16 bit register represent one parameter. Since two parameters are requested four registers are required.

			Voltag	e 2 Data				Power Fac	tor 1 Data			
Response):										1	
01 (Hex)	04 (Hex)	08 (Hex)	43 (Hex)*	5B (Hex)*	4E (Hex)*	04 (Hex)	3F (Hex)	80 (Hex)	00 (Hex)	00 (Hex)	79 (Hex)	3F (Hex)
Device Address	Function Code	Byte Count	Data Register-1 High Byte	Data Register-1 Low Byte	Data Register-2	Data Register-2 Low Byte	Data Register-3 High Byte	Data Register-3 Low Byte	Data Register-4	Data Register-4 Low Byte	CRC Low	CRC High

	User Assignable mapping Register	(Starting	User Assignable mapping Register		
(Starting Address)	(4x Register Table7)	Address)	(4x Register Table6)		
0x200	Voltage 2 (0x0002)	→ 0x200	0x200 (16 bit)	0x201 (16 bit)	
0x201	Power factor 1 (0x001E)	→ 0x202	0x202 (16 bit)	0x203 (16 bit)	
0x202	Wh Import (0x0048)	→ 0x204	0x204 (16 bit)	0x205 (16 bit)	
0x203	Frequency (0x0046)	→ 0x206	0x206 (16 bit)	0x207 (16 bit)	
0x212	Current 1 (0x0006)	→ 0x224	0x224 (16 bit)	0x225 (16 bit)	
0x213	VAh (0x0050)	► 0x226	0x226 (16 bit)	0x227 (16 bit)	

To get the data through User Assignable Register go through the following steps:

1) Assign starting addresses(TABLE 1) of parameters of interest to a "User assignable mapping registers" in a sequence in which they are to be accessed (see section "Assigning Parameter to User Assignable Registers").

2) Once the parameters are mapped data can be acquired by using "User assignable data register" Starting address. i.e to access data of Voltage2, Power factor1, Wh import, Frequency send query with starting address 0x200 with number of register 8 or individually parameters can be accessed. For example, if current1 is to be accessed use starting address 0x212. (See section Reading Parameter data through User Assignable Registers).